62.不同路径
力扣题目链接
class Solution {
public int uniquePaths(int m, int n) {
// 确定dp数组(dp table)以及下标的含义
// 确定递推公式
// dp数组如何初始化
// 确定遍历顺序
// 举例推导dp数组
//dp[i][j]到ij拥有的步数
//dp[i][j] = dp[i - 1][j] + dp[i][j - 1];//画一下就知道了
//dp[0][j] = 1,dp[i][0] = 1;
//先i后j
int[][] dp = new int[m][n];
for(int i = 0;i < m;i++){
dp[i][0] = 1;
}
for(int j = 0;j < n;j++){
dp[0][j] = 1;
}
for(int i = 1;i < m;i++){
for(int j = 1;j < n;j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}
63. 不同路径 II
力扣题目链接
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
//dp[i][j]到达ij的路径数量,障碍物处dp = 0
//dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
//dp[i][0] = 1;dp[0][j] = 1
//先i后j
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
for(int i = 0;i < m;i++){
if(obstacleGrid[i][0] == 1){
while(i < m){
dp[i][0] = 0;
i++;
}
}else{
dp[i][0] = 1;
}
}
for(int i = 0;i < n;i++){
if(obstacleGrid[0][i] == 1){
while(i < n){
dp[0][i] = 0;
i++;
}
}else{
dp[0][i] = 1;
}
}
for(int i = 1;i < m;i++){
for(int j = 1;j < n;j++){
if(obstacleGrid[i][j] == 1){
dp[i][j] = 0;
}else{
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
}