不同的数据预处理对L1距离性能的影响

本文探讨了不同数据预处理步骤如何影响使用L1距离的最近邻分类器的性能。通过分析减去均值、减去像素均值、除以标准差、像素级标准化和坐标轴旋转等操作,得出结论:平移和归一化操作不会显著改变性能,而坐标旋转会导致性能变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题由来

这个问题来自于CS231n Assignment1 Q1 inlineQuestion 2 ,原问题描述如下
We can also use other distance metrics such as L1 distance.
For pixel values p i j ( k ) p_{ij}^{(k)} pij(k) at location ( i , j ) (i,j) (i,j) of some image I k I_k Ik,

the mean μ \mu μ across all pixels over all images is μ = 1 n h w ∑ k = 1 n ∑ i = 1 h ∑ j = 1 w p i j ( k ) \mu=\frac{1}{nhw}\sum_{k=1}^n\sum_{i=1}^{h}\sum_{j=1}^{w}p_{ij}^{(k)} μ=nhw1k=1ni=1hj=1wpij(k)
And the pixel-wise mean μ i j \mu_{ij} μij across all images is
μ i j = 1 n ∑ k = 1 n p i j ( k ) . \mu_{ij}=\frac{1}{n}\sum_{k=1}^np_{ij}^{(k)}. μij=n1k=1npij(k).
The general standard deviation σ \sigma σ and pixel-wise standard deviation σ i j \sigma_{ij} σij is defined similarly.

Which of the following preprocessing steps will not change the performance of a Nearest Neighbor classifier that uses L1 distance? Select all that apply.

  1. Subtracting the mean μ \mu μ ( p ~ i j ( k ) = p i j ( k ) − μ \tilde{p}_{ij}^{(k)}=p_{ij}^{(k)}-\mu p~ij(k)=pij(k)μ.)
  2. Subtracting the per pixel mean μ i j \mu_{ij} μij ( p ~ i j ( k ) = p i j ( k ) − μ i j \tilde{p}_{ij}^{(k)}=p_{ij}^{(k)}-\mu_{ij} p~ij(k)=pij(k)μij.)
  3. Subtracting the mean μ \mu μ and dividing by the standard deviation σ \sigma σ.
  4. Subtracting the pixel-wise mean μ i j \mu_{ij} μij and dividing by the pixel-wise standard deviation σ i j \sigma_{ij} σij.
  5. Rotating the coordinate axes of the data.

我的思路是这样的:
使用L1 distance, P 1 = ( x 1 , x 2 ) P_1 = (x_1,x_2) P1=(x1,x2

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值