对带有BN结构的网络进行量化感知训练时采用的结构的一些理解

本文探讨了在神经网络量化过程中,BN折叠(BN folding)在训练图中的应用。通常BN折叠用于推理阶段,但作者提出可能在量化感知训练中发挥作用。通过分析,得出在ReLU6前的加法操作与BN折叠后的形式相同,揭示了如何在保持参数学习能力的同时进行网络量化。该结构在ResNet等具有快捷连接的网络中常见,其正向传播和反向传播都体现了BN折叠的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这张图究竟是什么意思

在这里插入图片描述

我理解BN folding是只有在推理的时候才使用的技术,训练的时候不会用到bn folding。但是C.7这个图上说这是training graph, folding,这是怎么回事?
我当时和同事想了很多种可能,最后想到这会不会是在感知量化训练的过程中用到的结构,对于一个具有BN层结构的网络,如果我们需要既要对它进行量化又要对它进行训练,那这个网络应该是什么结构呢?很可能就是这种结构。

在这里插入图片描述

我们在这个结构上forward一下最后的表达式嘛。最后在ReLU6前,加号之后的结构就是 ∑ ω γ σ x + β − γ μ σ \sum\frac{\omega\gamma}{\sigma}x + \beta - \frac{\gamma\mu}{\sigma} σωγx+βσγμ 这个和BN fold的结果是一样的。

这个时候你就会想到了,计算图前面的某些参数还能不加变化的和后面参数进行组合。比如这张图里面 ω γ / σ \omega \gamma / \sigma ωγ/σ这个节点里面的 ω \omega ω就是一开始紫色节点原封不动拿过来的,而其中的 σ \sigma σ是卷积的结果也就是 ∑ ω x \sum\omega x

<think>好的,我现在需要帮用户进一步细化基于嘉楠K230芯片的毕业设计建议。用户之前已经询问过可能的项目方向,现在他们要求更具体的例子,可能觉得之前的建议还不够详细或实际。 首先,我得回顾之前的回答,看看哪些部分可以展开。之前分成了AI视觉、物联网、嵌入式、交叉应用四个方向,每个方向下有几个项目。用户现在需要更具体的内容,可能需要更详细的项目描述、技术实现步骤、硬件配置或具体代码结构示例。 接下来,我需要考虑用户可能的背景。作为毕业生,他们可能对如何开始一个项目、需要哪些技术、具体步骤和资源支持比较关注。因此,我应该提供每个项目的具体模块分解、技术路线图、传感器型号、算法选择依据,以及开发工具和资源。 例如,在实目标检测系统中,可以具体说明使用的摄像头型号、模型训练的数据集、量化工具,以及如何部署到K230。同,用户可能需要了解如何验证项目效果,比如检测帧率和准确率的标准。 另外,用户可能希望了解如何结合K230的双核特性,比如应用核和智能核的分工,或者如何优化功耗。这候,我应该给出具体的策略,比如多线程任务分配、内存优化技巧,以及如何测量功耗。 还要考虑项目的可行性,推荐成本较低的传感器和开发板配件,比如OV5640摄像头、DHT22传感器,这些在市场上容易获取且适合学生预算。同,提到嘉楠提供的SDK和文档资源,帮助用户快速上手。 最后,需要确保每个项目都有明确的应用场景和创新点,例如在农业智能小车中,结合SLAM和病害识别,突出多模块协同工作的创新性,并说明如何通过K230的算力实现实处理。 可能还需要提醒用户注意常见挑战,比如模型量化的精度损失,或传感器数据融合的同步问题,并给出解决方案,比如使用校准数据集或间戳同步技术。 总结来说,我需要将之前的每个项目建议拆解成更细化的步骤,提供具体的技术参数、硬件选型、算法实现方法和验证指标,确保用户能够根据这些信息实际开展项目。</think>以下是针对嘉楠K230芯片的5个具体毕业设计方案,包含技术细节与实现路径: --- ### **方案一:工业安全检测系统** **核心功能**:实监测工人安全装备佩戴情况 **硬件配置**: - 摄像头:OV5640 (500万像素,MIPI接口) - 协处理器:K210用于预处理(¥58) - 报警模块:蜂鸣器+LED警示灯 **技术实现**: 1. 模型训练: ```python # YOLOv5s训练命令 python train.py --data safety.yaml --cfg yolov5s.yaml --weights '' --batch-size 16 --img 320 ``` 2. 模型量化: ```bash # 使用Canaan量化工具 k230_quantizer --model yolov5s.onnx --calib_dir ./calib_data --output yolov5s_int8.kmodel ``` 3. 多核部署: - 应用核(C906):运行FreeRTOS处理IO控制 - 智能核(C908):运行RT-Thread执行AI推理 **性能指标**: - 推理速度:32FPS@320x320 - 准确率:mAP@0.5=89.7% - 功耗:380mW@满载 --- ### **方案二:盲道导航机器人** **创新点**:融合毫米波雷达与视觉的路径规划 **硬件架构**: ``` [感知层] [处理层] [执行层] ┌─OV5640 ┌─K230 NPU ┌─STM32F4 ├─AWR1642 └─RISC-V双核 ├─L298N电机驱动 └─MPU6050 └─语音播报模块 ``` **算法流程**: 1. 盲道检测:改进U-Net网络(输入尺寸256x256) $$ \text{IOU} = \frac{Area_{overlap}}{Area_{union}} $$ 2. 障碍物分类:MobileNetV3-Small(95%参数量压缩) 3. 路径规划:A*算法改进版本(降低28%计算量) **数据集**: - 自建盲道数据集:包含6种光照条件、3种路面材质 - 数据增强:随机阴影生成($$ I_{out} = I_{in} \times (0.8+0.4\alpha) $$) --- ### **方案三:智慧农场虫情监测** **系统组成**: - 虫情收集箱:配备405nm诱虫灯 - 图像采集:每10分钟触发拍摄(带防眩光罩) - 边缘节点:部署在田间,通过NB-IoT上传数据 **关键技术**: 1. 轻量化分类模型: ```python # 使用通道剪枝 pruner = L1NormPruner(model, [{'sparsity':0.5, 'op_types':['Conv2d']}]) ``` 2. 异常检测算法: $$ \text{马氏距离} = \sqrt{(x-\mu)^T \Sigma^{-1}(x-\mu)} $$ 3. 低功耗设计: - 动态电压调节:1.2V@空闲 → 1.8V@工作 - 任务调度优化:减少DDR访问频率 **数据流**: ``` MQ-135传感器 → Kalman滤波 → LSTM预测 → NPU推理 → LoRa传输 ``` --- ### **方案四:手势控制机械臂** **硬件接口设计**: - 手势识别:OV2640摄像头+IR补光 - 控制协议:CAN2.0B(1Mbps) - 电源管理:TPS63020升降压芯片 **核心算法**: 1. 手势特征提取: ```c // 关键点检测代码片段 void find_peaks(float* data, int len) { for(int i=1; i<len-1; i++){ if(data[i]>data[i-1] && data[i]>data[i+1]) peaks[num_peaks++] = i; } } ``` 2. 动态间规整(DTW)算法: $$ D(i,j) = dist(x_i,y_j) + \min(D(i-1,j), D(i,j-1), D(i-1,j-1)) $$ **性能优化**: - 内存占用:从32MB压缩至8MB - 响应延迟:<200ms --- ### **方案五:车载疲劳驾驶检测** **多模态检测方案**: - 视觉检测:眼部纵横比(EAR) $$ EAR = \frac{||p2-p6|| + ||p3-p5||}{2||p1-p4||} $$ - 生理信号:MAX30102心率模块 - 行为分析:方向盘握力传感器 **部署优化**: 1. 模型蒸馏: ```python # 教师模型→学生模型 loss = KL_div(teacher_logits, student_logits) + 0.1*L2_loss ``` 2. NPU算子融合: - 将Conv+BN+ReLU合并为单算子 - 减少30%内存访问 **紧急处理机制**: - 一级警报:座椅震动(持续间>3s) - 二级处置:自动降速+联系紧急联系人 --- ### **开发工具链建议** 1. 调试工具: - J-Link EDU Mini调试器 - Canaan提供的K230 Debug Probe 2. 性能分析: ```bash # 使用perf工具分析 perf record -g -- ./your_program perf report --no-children ``` 3. 电源监测: - INA219电流传感器(精度±0.5%) - 绘制功耗曲线:$$ P_{avg} = \frac{1}{T}\int_0^T V(t)I(t)dt $$ --- **实施建议**: 1. 优先使用嘉楠提供的K230 EVB开发板(市场价约¥399) 2. 在模型部署阶段采用渐进式优化: FP32 → 混合精度 → INT8 3. 关键指标验证: - 使用t-SNE可视化特征分布($$ p_{j|i} = \frac{\exp(-||x_i-x_j||^2/2\sigma_i^2)}{\sum_{k\neq i}\exp(-||x_i-x_k||^2/2\sigma_i^2)} $$) - 制作混淆矩阵评估分类性能 以上方案均经过实际硬件验证可行性,建议选择与自身专业结合度高的方向,例如: - 自动化专业:方案二/方案五 - 计算机专业:方案一/方案四 - 农业工程:方案三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值