支配值数目(GT_COUNT.C)

已知f[ ]与g[ ]两个整数数组,元素都已经从小到大排列,试编写程序算出f[ ]中每一个元素比g[ ]中元素大的个数总和。

我的答案:

#include <stdio.h>

int main()
{
	int a[10]={1,2,4,7,9,12,13,15,16,20};
	int b[10]={4,5,7,8,9,10,11,13,16,19};
	int i,j,count=0;
	for(i=0;i<10;i++)
	{
		for(j=9;j>=0;j--)
		{
			if(a[i]>b[j])
			{
				count+=j+1;
				break;
			}
		}
	}
	printf("%d \n",count);
	return 0;
}
标准答案:

int  dominance_count(int f[], int g[], int m, int n)
{
     int  index_f, index_g;
     int  count;

     count = index_f = index_g = 0;
     while (index_f < m && index_g < n)
          if (f[index_f] <= g[index_g])
               index_f++;
          else
               index_g++, count += m - index_f;
     return count;
}


/* ------------------------------------------------------ */

#include <stdio.h>

void main(void)
{
     int  x[] = {  1,  2,  4,  7,  9, 12, 13, 15, 16, 20};
     int  nx  = sizeof(x)/sizeof(int);

     int  y[] = {  4,  5,  7,  8,  9, 10, 11, 13, 16, 19};
     int  ny  = sizeof(y)/sizeof(int);

     int  dominance_count(int [], int [], int, int), i;

     printf("\nDominance Count of two Increasing Arrays\n");
     printf("\n  #   Array 1   Array 2");
     printf("\n --   -------   -------");

     for (i = 0; i < nx; i++)
          printf("\n%3d%10d%10d", i, x[i], y[i]);
     printf("\n\nThere are %d Dominance Pairs.", 
            dominance_count(x, y, nx, ny));
}

粗一看自己的答案貌似很简洁,仔细看标准答案,人家只用了一次循环就搞定了,而我用了双重循环,效率低了很多……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值