利用多级蒙特卡罗中的混合精度算术及加速Heston模型校准定价器
在金融领域,期权定价和模型校准是至关重要的环节。随着计算需求的不断增加,如何提高计算效率成为了研究的热点。本文将介绍两种提高计算效率的方法:一是利用多级蒙特卡罗中的混合精度算术,二是加速Heston模型校准的闭式定价器。
多级蒙特卡罗中的混合精度算术
在期权定价中,多级蒙特卡罗(MLMC)方法是一种常用的技术。而混合精度多级蒙特卡罗(MPML)方法则是在此基础上的创新,旨在通过降低精度来减少计算时间,同时保持最终的准确性。
数值结果分析
我们针对亚洲看涨期权在Heston模型下的定价问题进行了数值性能分析,考虑了两种基准参数集(I和II),具体参数如下表所示:
| 基准参数集 | S0 | κ | θ | σ | r | ν0 | ρ | Feller条件 |
| — | — | — | — | — | — | — | — | — |
| I | 100 | 3 | 0.16 | 0.4 | 0.02 | 0.1 | -0.8 | 满足 |
| II | 100 | 1.5 | 0.16 | 0.9 | 0.02 | 0.1 | -0.8 | 不满足 |
我们重点关注了两个方面:启发式精度选择算法的稳定性和MPML方法相对于经典MLMC算法的加速效果。
- 启发式稳定性分析 :为了测试启发式精度选择算法(算法2)的稳定性,我们使用参数集I,固定L = 6,独立运行MPML算法1(算法1)50次。结果表明,启发式选择的精度在独立运行时可能会在3位范围内变化,但这种小的
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



