24、利用多级蒙特卡罗中的混合精度算术及加速Heston模型校准定价器

利用多级蒙特卡罗中的混合精度算术及加速Heston模型校准定价器

在金融领域,期权定价和模型校准是至关重要的环节。随着计算需求的不断增加,如何提高计算效率成为了研究的热点。本文将介绍两种提高计算效率的方法:一是利用多级蒙特卡罗中的混合精度算术,二是加速Heston模型校准的闭式定价器。

多级蒙特卡罗中的混合精度算术

在期权定价中,多级蒙特卡罗(MLMC)方法是一种常用的技术。而混合精度多级蒙特卡罗(MPML)方法则是在此基础上的创新,旨在通过降低精度来减少计算时间,同时保持最终的准确性。

数值结果分析

我们针对亚洲看涨期权在Heston模型下的定价问题进行了数值性能分析,考虑了两种基准参数集(I和II),具体参数如下表所示:
| 基准参数集 | S0 | κ | θ | σ | r | ν0 | ρ | Feller条件 |
| — | — | — | — | — | — | — | — | — |
| I | 100 | 3 | 0.16 | 0.4 | 0.02 | 0.1 | -0.8 | 满足 |
| II | 100 | 1.5 | 0.16 | 0.9 | 0.02 | 0.1 | -0.8 | 不满足 |

我们重点关注了两个方面:启发式精度选择算法的稳定性和MPML方法相对于经典MLMC算法的加速效果。

  • 启发式稳定性分析 :为了测试启发式精度选择算法(算法2)的稳定性,我们使用参数集I,固定L = 6,独立运行MPML算法1(算法1)50次。结果表明,启发式选择的精度在独立运行时可能会在3位范围内变化,但这种小的
内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值