以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家? 本题是这个问题的升级版:已知 N 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家? 输入格式:输入在第一行中给出一个正整数 N(5≤N≤100)。随后 N 行,第 i 行给出第 i 号玩家说的话(1≤i≤N),即一个玩家编号,用正号表示好人,负号表示狼人。 输出格式:如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 A=a[1],...,a[M] 和 B=b[1],...,b[M],若存在 0≤k<M 使得 a[i]=b[i] (i≤k),且 a[k+1]<b[k+1],则称序列 A 小于序列 B。若无解则输出 |
输入样例 1:
5
-2
+3
-4
+5
+4
输出样例 1:
1 4
输入样例 2:
6
+6
+3
+1
-5
-2
+4
输出样例 2(解不唯一):
1 5
输入样例 3:
5
-2
-3
-4
-5
-1
输出样例 3:
No Solution
考察 : 逻辑判断,挺有趣的一道题 |
注意 : 说谎的总人数为二(好人与狼人各一个) |
思路 : 暴力枚举 |
C/C++
#include<bits/stdc++.h>
using namespace std;
map<int,bool> wolf; // true 为 wolf
int N,f[101];
bool Wolf(int x,int y); // 判断是否符合要求
int main()
{
cin >> N;
for(int z=1;z<=N;z++) cin >> f[z];
for(int z=1;z<N;z++)
{
wolf[z] = true;
for(int z1=z+1;z1<=N;z1++)
{
wolf[z1] = true;
if(Wolf(z,z1)) return 0;
wolf[z1] = false;
}
wolf[z] = false;
}
cout << "No Solution" << endl;
return 0;
}
bool Wolf(int x,int y){
int lie[101]={0},lieNum=0;
for(int z=1;z<=N;z++){
if(f[z]<0 && !wolf[-f[z]])
{
lie[z] = 1;
lieNum++;
}
else if(f[z]>0 && wolf[f[z]])
{
lie[z] = 1;
lieNum++;
}
}
if(lieNum>2 || lie[x]+lie[y]!=1) return false; // 说谎的人数大于2 或者说谎的狼不唯一
cout << x << " " << y << endl;
return true;
}