以下文字摘自《灵机一动·好玩的数学》:“狼人杀”游戏分为狼人、好人两大阵营。在一局“狼人杀”游戏中,1 号玩家说:“2 号是狼人”,2 号玩家说:“3 号是好人”,3 号玩家说:“4 号是狼人”,4 号玩家说:“5 号是好人”,5 号玩家说:“4 号是好人”。已知这 5 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。扮演狼人角色的是哪两号玩家?
本题是这个问题的升级版:已知 N 名玩家中有 2 人扮演狼人角色,有 2 人说的不是实话,有狼人撒谎但并不是所有狼人都在撒谎。要求你找出扮演狼人角色的是哪几号玩家?
输入格式:
输入在第一行中给出一个正整数 N(5≤N≤100)。随后 N 行,第 i 行给出第 i 号玩家说的话(1≤i≤N),即一个玩家编号,用正号表示好人,负号表示狼人。
输出格式:
如果有解,在一行中按递增顺序输出 2 个狼人的编号,其间以空格分隔,行首尾不得有多余空格。如果解不唯一,则输出最小序列解 —— 即对于两个序列 A=a[1],…,a[M] 和 B=b[1],…,b[M],若存在 0≤k<M 使得 a[i]=b[i] (i≤k),且 a[k+1]<b[k+1],则称序列 A 小于序列 B。若无解则输出 No Solution。
输入样例 1:
5
-2
+3
-4
+5
+4
输出样例 1:
1 4
输入样例 2:
6
+6
+3
+1
-5
-2
+4
输出样例 2(解不唯一):
1 5
输入样例 3:
5
-2
-3
-4
-5
-1
输出样例 3:
No Solution
思路:参考了柳神的代码。用一个数组记录每个人说的话,再用一个数组标记一个人是好人还是狼人,最后遍历所有情况求符合条件的解。
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> v(n + 1);
for (int i = 1; i <= n; i++) cin >> v[i];
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
//lie用于记录说谎的人,a用于记录所有人情况,1表示好人,-1表示狼人
vector<int> lie, a(n + 1, 1);
a[i] = a[j] = -1;//i和j为狼人,其他为好人
for (int k = 1; k <= n; k++) {
//k说的话和真实情况不同(即v[k] * a[abs(v[k])] < 0)则表示k在说谎
if (v[k] * a[abs(v[k])] < 0) {
lie.push_back(k);
}
}
//有两人说慌,且一人是狼人一人是好人
if (lie.size() == 2 && a[lie[0]] + a[lie[1]] == 0) {
cout << i << " " << j;
return 0;
}
}
}
cout << "No Solution";
return 0;
}