给定一棵有 N 个结点的树(树中结点从 1 到 N 编号,根结点编号为 1)。每个结点有一种颜色,或为黑,或为白。
称以结点 u 为根的子树是 好的,若子树中黑色结点与白色结点的数量之差的绝对值不超过 1。称整棵树是 完美树,若对于所有 1 ≤ i ≤ N,以结点 i 为根的子树都是好的。
你需要将整棵树变成完美树,为此你可以进行以下操作任意次(包括零次):选择任意一个结点 i (1 ≤ i ≤ N),改变结点 i 的颜色(若结点 i 目前是黑色则将其改为白色,若结点 i 目前是白色则将其改为黑色)。这次操作的代价为 Pi。
求将给定的树变为完美树的最小代价。
注:以结点 i 为根的子树,由结点 i 以及结点 i 的所有后代结点组成。
输入格式:
输入第一行为一个数 N (1≤N≤105),表示树的结点个数。
接下来的 N 行,第 i 行的前三个数为 Ci,Pi,Ki (1≤Pi≤104,0≤Ki≤N),分别表示树上编号为 i 的结点的初始颜色(0 为白色,1 为黑色)、变换颜色的代价及孩子结点的数量。紧跟着有 Ki 个数,为孩子结点的编号。数字均用一个空格隔开,所有的编号保证在 1 到 N 里,且不会有环。
数据中只包含一棵树。
输出格式:
输出一行一个数,表示将树 T 变为完美树的最小代价。
输入样例:
10
1 100 3 2 3 4
0 20 1 7
0 5 2 5 6
0 8 1 10
0 7 0
0 2 0
1 1 2 8 9
0 15 0
0 13 0
1 8 0
输出样例:
15
C/C++
#include<bits/stdc++.h>
using namespace std;
struct Node{
int color,power,res;
vector<int> v;
}n[100001];
bool cmp(int x,int y){
return n[x].power < n[y].power;
}
int buildTree(int inx)
{
vector<int> hei,bai;
if(n[inx].color==0) bai.push_back(inx);
else hei.push_back(inx);
for(int x:n[inx].v) {
int key = buildTree(x);
if(key!=0){
if(n[key].color==0) bai.push_back(key);
else hei.push_back(key);
}
n[inx].res += n[x].res;
}
sort(hei.begin(),hei.end(),cmp);
sort(bai.begin(),bai.end(),cmp);
while(!hei.empty() && !bai.empty()){
hei.pop_back();
bai.pop_back();
}
int op = 0;
while(!hei.empty() && hei.size()-op>1){
int key = hei.front();
n[inx].res += n[key].power;
op++;
hei.erase(hei.begin());
}
while(!bai.empty() && bai.size()-op>1){
int key = bai.front();
n[inx].res += n[key].power;
op++;
bai.erase(bai.begin());
}
if(!hei.empty() && hei.size()-op>0) return hei[0];
if(!bai.empty() && bai.size()-op>0) return bai[0];
return 0;
}
int main()
{
int N;
cin >> N;
for(int z=1;z<=N;z++){
int a,b,c;
cin >> a >> b >> c;
n[z].color = a;
n[z].power = b;
while(c--){
int d;
cin >> d;
n[z].v.push_back(d);
}
}
buildTree(1);
cout << n[1].res;
return 0;
}