Number Range 管理之并行缓冲

探讨SAP系统中NumberRange并行缓冲管理,包括事务代码SNRO、SM56的使用,号码段缓冲区分配原理,以及并行缓冲重置的方法与注意事项。

Number Range 管理之并行缓冲:

常用的事务代码SNRO,SM56还有一些业务专用的号码管理,可以在SPRO中查找:

SNRO :Number Range 管理

clip_image002

一般的操作是维护号码范围。如RV_BELEG 是SD凭证编码管理。

clip_image004

并行缓冲:所为并行是指word process DIA的之间是并行获得的,如有8个instance ,每个instance 有40个WP,那号码段缓冲区表中会直接分配320*200个号码。 使用并行缓冲会提高并行处理的速度,如批量过账等。

数量号:一次分配占用的号码数量。

SM56: 缓冲区管理

SM56是管理一般编码范围的缓冲区,重置缓冲区,当每次重置时会浪费200个号,如上配置个数,一定要注意不适用并行缓冲。

clip_image006

哪并行缓冲区如何重置:

Note: 1244898 NK: Reorganization of local buffers for intervals

Report : NK_REORGANIZE

此报表有测试功能,可以先运行测试模式检查一下各WP的编码范围,如果是当个instance有问题也可以单独重置。

clip_image008

注意:并行缓冲重置会导致大量的号码段无用,慎用!

转载于:https://www.cnblogs.com/byfhd/p/3574479.html

<think> 我们有一个需求:使用Java并行处理Google Cloud Storage (GCS)上的压缩文件,并将其转换为RoaringBitmap。 步骤: 1. 从GCS读取压缩文件(可能是gzip等格式) 2. 使用并行方式处理多个文件(或者一个文件分块处理) 3. 将每个文件的内容转换为RoaringBitmap(假设文件内容是整数列表,每行一个整数?) 我们需要考虑: - 如何从GCS读取文件(使用Google Cloud Storage客户端库) - 如何处理压缩文件(使用Java的GZIPInputStream等) - 如何并行处理(使用多线程,例如ExecutorService) - 如何构建RoaringBitmap(使用RoaringBitmap库) 假设:每个文件包含多个整数,每行一个整数(也可能是其他格式,但这里假设是文本文件,每行一个整数,压缩为gzip) 步骤详细: 1. 初始化Google Cloud Storage客户端。 2. 获取要处理的文件列表(或单个大文件,但这里说压缩文件,可能是多个,也可能是单个,但需求是并行,所以最好是多个文件,或者将一个大文件拆分成多个部分并行处理,但拆分压缩文件比较复杂,通常并行处理多个文件更容易)。 3. 为每个文件启动一个任务,任务包括: a. 从GCS下载文件(作为流) b. 用GZIPInputStream解压 c. 逐行读取,解析整数,并添加到RoaringBitmap中 4. 等待所有任务完成,合并多个RoaringBitmap(使用RoaringBitmap的or操作合并) 注意:如果文件很大,我们可能需要考虑内存问题。但RoaringBitmap是压缩的位图,可以处理大量整数。但是,如果单个文件太大,我们也可以考虑在读取时使用缓冲,避免一次性加载所有数据到内存。 另外,如果文件是单个大文件,我们可以考虑将其拆分成多个部分,然后并行处理每个部分。但是,由于文件是压缩的,我们无法直接随机访问,所以拆分压缩文件比较困难。因此,这里假设我们处理的是多个压缩文件。 实现: 我们使用Google Cloud Storage的Java客户端库(需要添加依赖) 以及RoaringBitmap的依赖。 Maven依赖示例: ```xml <dependency> <groupId>com.google.cloud</groupId> <artifactId>google-cloud-storage</artifactId> <version>2.11.0</version> </dependency> <dependency> <groupId>org.roaringbitmap</groupId> <artifactId>RoaringBitmap</artifactId> <version>0.9.39</version> </dependency> ``` 代码结构: 1. 创建Storage客户端 2. 获取存储桶和文件列表(根据需求,这里假设我们有一个文件列表,或者通过前缀匹配等) 3. 创建线程池 4. 为每个文件提交一个任务(Callable),任务返回一个RoaringBitmap 5. 收集所有返回的RoaringBitmap,然后合并 注意:如果文件数量非常多,合并的RoaringBitmap也很多,合并操作可能也会成为瓶颈。可以考虑分阶段合并。 代码示例: 我们假设文件在同一个bucket中,且文件名列表已知(或者通过通配符匹配)。 由于GCS对象是Blob,我们可以通过BlobId来获取。 下面是一个简单的实现框架: ```java import com.google.cloud.storage.*; import org.roaringbitmap.RoaringBitmap; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.nio.channels.Channels; import java.util.ArrayList; import java.util.List; import java.util.concurrent.*; import java.util.zip.GZIPInputStream; public class GcsParallelProcessor { private final Storage storage; private final String bucketName; private final ExecutorService executor; public GcsParallelProcessor(String bucketName, int nThreads) { this.storage = StorageOptions.getDefaultInstance().getService(); this.bucketName = bucketName; this.executor = Executors.newFixedThreadPool(nThreads); } // 处理多个文件并返回合并的RoaringBitmap public RoaringBitmap processFiles(List<String> fileNames) throws InterruptedException, ExecutionException { List<Future<RoaringBitmap>> futures = new ArrayList<>(); // 为每个文件提交任务 for (String fileName : fileNames) { futures.add(executor.submit(new FileProcessorTask(fileName))); } // 等待所有任务完成并收集结果 RoaringBitmap result = new RoaringBitmap(); for (Future<RoaringBitmap> future : futures) { result.or(future.get()); // 合并每个文件产生的bitmap } executor.shutdown(); // 关闭线程池 return result; } private class FileProcessorTask implements Callable<RoaringBitmap> { private final String fileName; public FileProcessorTask(String fileName) { this.fileName = fileName; } @Override public RoaringBitmap call() throws Exception { RoaringBitmap bitmap = new RoaringBitmap(); BlobId blobId = BlobId.of(bucketName, fileName); try (BufferedReader reader = new BufferedReader( new InputStreamReader( new GZIPInputStream( Channels.newInputStream(storage.reader(blobId)) ) ) )) { String line; while ((line = reader.readLine()) != null) { // 假设每行是一个整数 int value = Integer.parseInt(line.trim()); bitmap.add(value); } } catch (IOException e) { throw new RuntimeException("Error processing file: " + fileName, e); } return bitmap; } } } ``` 注意: 1. 异常处理:这里简单抛出了运行时异常,实际应用中可能需要更细致的错误处理。 2. 整数解析:如果文件中存在非整数行,会抛出异常,需要根据实际情况处理(例如跳过非整数行)。 3. 内存问题:如果单个文件包含的整数非常多,RoaringBitmap可以高效处理,但也要注意内存使用。 4. 合并操作:合并多个RoaringBitmap使用`or`操作,但合并顺序可能会影响性能(RoaringBitmap在合并时进行了优化,但合并多个时,可以尝试分组合并以减少临时对象)。 5. 关闭资源:使用try-with-resources确保流关闭。 对于单个大文件,我们可以考虑将文件分割成多个部分?但是压缩文件分割比较困难,因为gzip不支持随机访问。因此,通常建议将大文件在生成时就分成多个小文件。 如果必须处理单个大文件,我们可以考虑使用GCS的字节范围读取(range request),但是压缩文件的分割点不容易确定(因为压缩是流式的)。因此,这种方法比较复杂,可能需要将文件下载到本地然后分割,或者使用支持分割的压缩格式(如bzip2)。这里不展开。 因此,上述代码适用于处理多个压缩文件。 另外,如果文件是其他压缩格式,只需替换解压流即可(如使用ZipInputStream等,但注意每个文件的格式要一致)。 总结:通过并行下载和解压多个文件,然后分别构建RoaringBitmap,最后合并,可以高效处理GCS上的压缩文件。 相关问题: 1. 如何处理单个大压缩文件的并行处理? 2. 如何优化RoaringBitmap的合并操作? 3. 如果文件中的整数不是每行一个,而是二进制格式,该如何处理? 4. 如何处理文件中的错误数据(例如非整数行)? 5. 如何监控并行任务的进度? </think> ### Java并行处理GCS压缩文件转换为RoaringBitmap的实现方法 以下是完整的实现步骤和代码示例,结合Google Cloud Storage Java SDK和RoaringBitmap库: #### 1. Maven依赖配置 ```xml <dependencies> <!-- Google Cloud Storage --> <dependency> <groupId>com.google.cloud</groupId> <artifactId>google-cloud-storage</artifactId> <version>2.23.0</version> </dependency> <!-- RoaringBitmap --> <dependency> <groupId>org.roaringbitmap</groupId> <artifactId>RoaringBitmap</artifactId> <version>0.9.39</version> </dependency> <!-- 并行处理工具 --> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>31.1-jre</version> </dependency> </dependencies> ``` #### 2. 核心实现代码 ```java import com.google.cloud.storage.*; import org.roaringbitmap.RoaringBitmap; import com.google.common.util.concurrent.ListenableFuture; import com.google.common.util.concurrent.ListeningExecutorService; import com.google.common.util.concurrent.MoreExecutors; import java.io.BufferedReader; import java.io.InputStreamReader; import java.nio.channels.Channels; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Callable; import java.util.concurrent.Executors; import java.util.zip.GZIPInputStream; public class GcsToRoaringBitmapProcessor { private final Storage storage; private final ListeningExecutorService executorService; public GcsToRoaringBitmapProcessor() { // 初始化GCS客户端 this.storage = StorageOptions.getDefaultInstance().getService(); this.executorService = MoreExecutors.listeningDecorator( Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors()) ); } public RoaringBitmap processFilesInParallel(String bucketName, List<String> filePaths) throws Exception { List<ListenableFuture<RoaringBitmap>> futures = new ArrayList<>(); // 为每个文件创建并行处理任务 for (String filePath : filePaths) { futures.add(executorService.submit( new FileProcessorTask(bucketName, filePath) )); } // 合并所有位图 RoaringBitmap result = new RoaringBitmap(); for (ListenableFuture<RoaringBitmap> future : futures) { result.or(future.get()); // 使用OR操作合并位图 } executorService.shutdown(); return result; } private class FileProcessorTask implements Callable<RoaringBitmap> { private final String bucketName; private final String filePath; public FileProcessorTask(String bucketName, String filePath) { this.bucketName = bucketName; this.filePath = filePath; } @Override public RoaringBitmap call() throws Exception { BlobId blobId = BlobId.of(bucketName, filePath); RoaringBitmap bitmap = new RoaringBitmap(); try (BufferedReader reader = new BufferedReader( new InputStreamReader( new GZIPInputStream( Channels.newInputStream(storage.reader(blobId)) ) ) )) { String line; while ((line = reader.readLine()) != null) { // 假设每行包含一个整数ID int id = Integer.parseInt(line.trim()); bitmap.add(id); } } return bitmap; } } } ``` #### 3. 使用示例 ```java public class Main { public static void main(String[] args) throws Exception { // 初始化处理器 GcsToRoaringBitmapProcessor processor = new GcsToRoaringBitmapProcessor(); // 设置GCS参数 String bucketName = "my-bucket"; List<String> files = List.of( "data/part1.gz", "data/part2.gz", "data/part3.gz" ); // 并行处理文件 RoaringBitmap result = processor.processFilesInParallel(bucketName, files); // 使用结果位图 System.out.println("Total elements: " + result.getCardinality()); System.out.println("Contains 42: " + result.contains(42)); } } ``` #### 关键技术点说明 1. **并行处理架构**: - 使用`ListeningExecutorService`管理线程池 - 每个文件处理任务独立运行在单独线程中 - 通过`ListenableFuture`管理异步任务 2. **GCS文件读取优化**: - 使用`Channels.newInputStream()`流式读取避免全文件加载 - 通过`GZIPInputStream`实时解压缩 - 支持大文件处理(内存占用恒定) 3. **RoaringBitmap合并**: - 使用`RoaringBitmap.or()`进行高效位图合并 - 合并操作复杂度为$O(n)$,n为位图数量 - 自动处理压缩格式转换 4. **错误处理增强建议**: ```java // 在FileProcessorTask中添加错误处理 try { // 文件处理逻辑 } catch (NumberFormatException e) { System.err.println("Invalid number format in: " + filePath); } catch (StorageException e) { System.err.println("GCS error: " + e.getMessage()); } ``` #### 性能优化技巧 1. **批量大小控制**: ```java // 根据文件大小动态调整线程池 int optimalThreads = Math.min( files.size(), Runtime.getRuntime().availableProcessors() * 2 ); ``` 2. **内存映射优化**: ```java // 对于超大文件使用内存映射 Blob blob = storage.get(blobId); try (ReadChannel channel = blob.reader()) { channel.setChunkSize(2 * 1024 * 1024); // 2MB块大小 // ... } ``` 3. **位图合并优化**: ```java // 使用懒合并策略 RoaringBitmap.OR(iterator) // 更高效的内存使用 ``` 4. **压缩格式处理**: - 支持GZIP、ZIP等多种格式 - 自动检测文件扩展名选择解压器 #### 适用场景 1. 用户画像标签聚合 2. 大规模ID去重操作 3. 实时数据分析预处理 4. 广告点击流分析 5. 推荐系统特征提取 [^1]: Google Cloud Storage的并行上传技术可优化大文件处理效率 [^2]: Dask与GCS的集成为分布式处理提供了参考架构 [^3]: gsutil命令行工具是操作GCS的基础 [^4]: GCS SDK提供的可续传方案适用于大文件处理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值