从2016年Gartner提出AIOps概念后,经过几年的发展,慢慢有了相对清晰的架构。实践证明,分这样三层,可以有效处理数据并在数据中台上随时叠加多个应用场景。
最底层是统管全部数据的数据处理层,包括所有组件、设备、第三方监控等的数据,根据使用者的设置要求统一采集存储。
数据治理层最主要的能力也有三个。一个是流式处理,只有这样的能力才可以达到秒级处理,为异常预警争分夺秒;第二个是AI智能化算法,可以对数据进行建模、对算法进行训练、达到机器学习的效果;第三个是运维大数据处理,具有大数据的处理能力。
经过数据治理层处理好的数据,就可以在上面玩出花来了。
运维应用层,分别对告警信息(嗯,这是运维人员最关注的)、性能指标、日志等数据进行分析。不同的信息都能叠加多种算法,组合成多样化的智能应用场景,比如告警抑制、故障场景发掘、指标异常检测、日志异常检测、综合根因定位等等等....
在应用层分析出的结果上,则可以为运营决策提供依据。最常见的场景有运营大屏、系统画像,过去的知识也可以沉淀出相应的知识图谱。
#老杨说运维#