【辨析】快速了解RBF神经网络与BP神经网络的区别

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/

RBF神经网络与BP神经网络都是常用的两种用于回归预测的神经网络,
本文通过对两种神经网络的对对,简单快速了解两种神经网络的特色与区别

一、RBF与BP模型简介

1.1.模型结构

BP神经网络的模型结构为:
BP神经网络模型结构
RBF神经网络的模型结构为:
RBF神经网络模型结构

1.2.模型表达式

BP神经网络的模型表达式为:
在这里插入图片描述

RBF神经网络的模型表达式为:
在这里插入图片描述

二、RBF神经网络与BP神经网络的对比

2.1 RBF与BP的激活函数对比

BP神经网络是以多个tansig函数之和,而RBF神经网络则是多个RBF函数之和。
tansig函数是一个S型函数,图象如下:
tansig函数
RBF函数是一个钟型函数,图象如下:
RBF函数

2.2 RBF与BP的思想对比

从思想上来看,BP是用多个S型曲线凑合出目标曲线,而RBF神经网络则是用多个钟型函数凑合出目标曲线,
BP神经网络的思想
所以两者在思想上几乎是相同的,极为相似,只是所使用的函数不同而已。
比较有趣的是,进一步分析会发现两个tansig函数实际上还能凑出一个RBF函数,所以RBF能拟合的曲线形态,BP一定也是能拟合的。

三、RBF神经网络与BP神经网络的训练方法对比

2.1.BP神经网络的训练

BP神经网络一般都用梯度下降法,或者其它优化算法进行优化,BP神经网络是将所以参数进行同时进行优化的。BP神经网络一般需要先计算梯度,再用梯度来逐步调整参数使得网络的误差下降。因此BP神经网络的训练相对会更耗时一些,也更不确定一些。

2.2.RBF神经网络的训练

RBF神经网络的隐层权重则是预设好的,例如以每个样本点作为权重,需要训练的只有输出层的权重,通常使用最小二乘法或正交最小二乘法进行求解就可以了。因此RBF神经网络的训练非常的快,并且训练结果是唯一的。
RBF神经网络的求解方法详见:《RBF神经网络的求解》

2.3 BP神经网络与RBF神经网络哪个更好

一般模型之间没有更好或更差一说,对于不同的数据,模型的适用程度不同,因此更多可以先通过理论分析来判断哪个模型更适用,但这需要对理论有更深入的掌握与理解,更简单的方法是直接通过模型实际建模效果来进行对比。


相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂
《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂
《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老饼讲解-BP神经网络

请老饼喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值