【原理】如何形象地理解交叉熵-信息熵

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/

交叉熵、信息熵概念基本贯穿了机器学习、深度学习中的类别识别模型,例如KL分布、softmax等等都是基于交叉熵与信息熵的理论进行定义的,本文不妨形象梳理一下什么是交叉熵、信息熵,以此一通百通。

一、信息量

1.1.什么是信息量

信息量是对信息的一种量化指标,用于衡量信息的大小,最常用的是香农信息量,香农信息量的定义与计算公式如下:
h ( x ) = − ln ⁡ ( p ( x ) ) h(x)=−\ln(p(x)) h(x)=ln(p(x))

其中,p是事件x发生的概率,h则为事件x所包含的香农信息量。
从式中可以看到,事件的香农信息量与事件的概率成反比,
香农信息熵
即一件事发生的概率越小,则包含的信息量越大

二、什么是信息熵

2.1.什么是信息熵

信息熵通俗来说就是信息量的期望,香农信息熵则是香农信息量的期望
如果已知 x 有 n 种取值,且知道每种取值的概率,则 x 的香农信息熵如下:
H ( x ) = − ∑ i n p ( x i ) ln ⁡ p (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老饼讲解-BP神经网络

请老饼喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值