Java8特性:Lambda表达式与Stream API

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/dc2222333/article/details/84567074

一、Labmda表达式

Lambda 表达式,也可称为闭包,它是推动 Java 8 发布的最重要新特性。

Lambda 允许把函数作为一个方法的参数(函数作为参数传递进方法中)。

使用 Lambda 表达式可以使代码变的更加简洁紧凑。

1.1语法

lambda 表达式的语法格式如下:

(parameters) -> expression 或 (parameters) ->{ statements; }

以下是lambda表达式的重要特征:

  • 可选类型声明:不需要声明参数类型,编译器可以统一识别参数值。
  • 可选的参数圆括号:一个参数无需定义圆括号,但多个参数需要定义圆括号。
  • 可选的大括号:如果主体包含了一个语句,就不需要使用大括号。
  • 可选的返回关键字:如果主体只有一个表达式返回值则编译器会自动返回值,大括号需要指定明表达式返回了一个数值。

1.2 Lambda 表达式实例

Lambda 表达式的简单例子:

// 1. 不需要参数,返回值为 5  
() -> 5  
  
// 2. 接收一个参数(数字类型),返回其2倍的值  
x -> 2 * x  
  
// 3. 接受2个参数(数字),并返回他们的差值  
(x, y) -> x – y  
  
// 4. 接收2个int型整数,返回他们的和  
(int x, int y) -> x + y  
  
// 5. 接受一个 string 对象,并在控制台打印,不返回任何值(看起来像是返回void)  
(String s) -> System.out.print(s)

lambda 表达式的局部变量可以不用声明为 final,但是必须不可被后面的代码修改(即隐性的具有 final 的语义)

int num = 1;  
Converter<Integer, String> s = (param) -> System.out.println(String.valueOf(param + num));
s.convert(2);
num = 5;  
//报错信息:Local variable num defined in an enclosing scope must be final or effectively 
 final

在 Lambda 表达式当中不允许声明一个与局部变量同名的参数或者局部变量。

String first = "";  
Comparator<String> comparator = (first, second) -> Integer.compare(first.length(), second.length());  //编译会出错 

二. Stream介绍

 

 

 

2.1 Stream的创建

Java 8有多种方式来创建Stream:

  • 通过集合的stream()方法或者parallelStream()
  • 使用流的静态方法,比如Stream.of(Object[]), IntStream.range(int, int) 或者 Stream.iterate(Object, UnaryOperator)。
  • 通过Arrays.stream(Object[])方法。
  • BufferedReader.lines()从文件中获得行的流。
  • Files类的操作路径的方法,如list、find、walk等。
  • 随机数流Random.ints()。
  • 其它一些类提供了创建流的方法,如BitSet.stream(), Pattern.splitAsStream(java.lang.CharSequence), 和 JarFile.stream()。

其实最终都是依赖底层的StreamSupport类来完成Stream创建。

2.2 中间操作

中间操作又可以分为无状态的(Stateless)和有状态的(Stateful),无状态中间操作是指元素的处理不受前面元素的影响,而有状态的中间操作必须等到所有元素处理之后才知道最终结果。

Stream的中间操作只是一种标记,只有执行了结束操作才会触发实际计算。 熟悉RxJava、Scala的同学可以看到,Stream中间操作的各个方法在RxJava、Scala中都可以找到熟悉的身影。

2.3 结束操作

2.3.1 短路操作

短路操作是指不用处理全部元素就可以返回结果。短路操作必须一个元素处理一次。

2.3.1 非短路操作

非短路操作可以批量处理数据,但是需要处理完全部元素才会返回结果。

三、Stream函数介绍

3.1 筛选filter

filter函数接收一个Lambda表达式作为参数,该表达式返回boolean,在执行过程中,流将元素逐一输送给filter,并筛选出执行结果为true的元素。 
如,筛选出所有学生:

List<Person> result = list.stream() .filter(Person::isStudent).collect(toList());


3.2 去重distinct

去掉重复的结果:

List<Person> result = list.stream().distinct() .collect(toList());
3.4 截取

截取流的前N个元素:

List<Person> result = list.stream().limit(3).collect(toList());
3.4 跳过

跳过流的前n个元素:

List<Person> result = list.stream().skip(3).collect(toList());
3.5 映射

对流中的每个元素执行一个函数,使得元素转换成另一种类型输出。流会将每一个元素输送给map函数,并执行map中的Lambda表达式,最后将执行结果存入一个新的流中。 
如,获取每个人的姓名(实则是将Perosn类型转换成String类型):

List<Person> result = list.stream().map(Person::getName).collect(toList());

3.6 合并多个流

例:列出List中各不相同的单词,List集合如下:
List<String> list = new ArrayList<String>();
list.add("I am a boy");
list.add("I love the girl");
list.add("But the girl loves another girl");


思路如下:

首先将list变成流:
list.stream();

按空格分词:
list.stream() .map(line->line.split(" "));


分完词之后,每个元素变成了一个String[]数组。

将每个String[]变成流:
list.stream().map(line->line.split(" ")).map(Arrays::stream)


此时一个大流里面包含了一个个小流,我们需要将这些小流合并成一个流。

将小流合并成一个大流: 
用flagmap替换刚才的map
list.stream() .map(line->line.split(" ")) .flagmap(Arrays::stream)


去重
list.stream().map(line->line.split(" ")).flagmap(Arrays::stream) .distinct() .collect(toList());


3.7 是否匹配任一元素:anyMatch

anyMatch用于判断流中是否存在至少一个元素满足指定的条件,这个判断条件通过Lambda表达式传递给anyMatch,执行结果为boolean类型。 
如,判断list中是否有学生:

boolean result = list.stream().anyMatch(Person::isStudent);


3.8 是否匹配所有元素:allMatch

allMatch用于判断流中的所有元素是否都满足指定条件,这个判断条件通过Lambda表达式传递给anyMatch,执行结果为boolean类型。 
如,判断是否所有人都是学生:

boolean result = list.stream().allMatch(Person::isStudent);


3.9 是否未匹配所有元素:noneMatch

noneMatch与allMatch恰恰相反,它用于判断流中的所有元素是否都不满足指定条件:

boolean result = list.stream() .noneMatch(Person::isStudent);


3.10 获取任一元素findAny

findAny能够从流中随便选一个元素出来,它返回一个Optional类型的元素。

Optional<Person> person = list.stream().findAny();


3.11 归约

归约是将集合中的所有元素经过指定运算,折叠成一个元素输出,如:求最值、平均数等,这些操作都是将一个集合的元素折叠成一个元素输出。

在流中,reduce函数能实现归约。 
reduce函数接收两个参数:

初始值
进行归约操作的Lambda表达式
3.11.1 元素求和:自定义Lambda表达式实现求和

例:计算所有人的年龄总和

int age = list.stream().reduce(0, (person1,person2)->person1.getAge()+person2.getAge());

reduce的第一个参数表示初试值为0; 
reduce的第二个参数为需要进行的归约操作,它接收一个拥有两个参数的Lambda表达式,reduce会把流中的元素两两输给Lambda表达式,最后将计算出累加之和。

3.11.2 元素求和:使用Integer.sum函数求和

上面的方法中我们自己定义了Lambda表达式实现求和运算,如果当前流的元素为数值类型,那么可以使用Integer提供了sum函数代替自定义的Lambda表达式,如:

int age = list.stream().reduce(0, Integer::sum);

Integer类还提供了min、max等一系列数值操作,当流中元素为数值类型时可以直接使用。

3.11.3 数值流的使用

采用reduce进行数值操作会涉及到基本数值类型和引用数值类型之间的装箱、拆箱操作,因此效率较低。 
当流操作为纯数值操作时,使用数值流能获得较高的效率。

3.11.4 将普通流转换成数值流

StreamAPI提供了三种数值流:IntStream、DoubleStream、LongStream,也提供了将普通流转换成数值流的三种方法:mapToInt、mapToDouble、mapToLong。 
如,将Person中的age转换成数值流:

IntStream stream = list.stream() .mapToInt(Person::getAge);


3.11.5 数值计算

每种数值流都提供了数值计算函数,如max、min、sum等。 
如,找出最大的年龄:

OptionalInt maxAge = list.stream() .mapToInt(Person::getAge).max();

由于数值流可能为空,并且给空的数值流计算最大值是没有意义的,因此max函数返回OptionalInt,它是Optional的一个子类,能够判断流是否为空,并对流为空的情况作相应的处理。 
此外,mapToInt、mapToDouble、mapToLong进行数值操作后的返回结果分别为:OptionalInt、OptionalDouble、OptionalLong
 

展开阅读全文

没有更多推荐了,返回首页