博弈论-匹配机制

稳定匹配

没有货币的市场

● 双边市场

    ■ 居民匹配

    ■ 约会网站

    ■ 大学录取

    ■ 求职市场

● 单边市场

    ■ 学生/课程

    ■ 宿舍房间分配

● 物物交换

    ■ 肾脏交换

    ■ 物物交换市场

什么构成了一个好的市场?

● 厚实

    ■ 有很多买家,很多卖家,很多选择...

    ■ 每个人都知道他们的选择

● 及时

    ■ 不要太快(有时间权衡决策)

    ■ 不要太慢(快速处理提议,新提议迅速到达)

● 安全

    ■ 人们在揭示偏好时不会受到伤害

    ■ 结果是公平的

    ■ 人们通过参与会更好

好市场变坏:解开

● 律师事务所想要获得优秀的法学生

● 最好在学生毕业后提供工作机会 - 这是他们质量的最强信号

● 然而,公司更喜欢提前提供 - 抢先获得优秀的二年级(或一年级)学生(可能性不大,但仍然如此)。

● 一个坏的均衡的例子

● 对公司不利

    ■ 根据2-3年后的预期需求进行招聘

    ■ 前景更加风险

● 对学生不利

    ■ 在只有一年后需要做出改变生活的决策

    ■ 不知道外面还有什么

● 使市场变薄

    ■ 双方在做出最终决策之前都较少地接触到所有好的选择

匹配医生和医院

● 自20世纪初以来,美国新毕业的医生必须进行住院医疗(培训期)。

● 对医生和医院来说,进行良好匹配都很重要!

● 医院开始越来越早地向学生发出工作邀请。

● 学生必须单独考虑每个提议 - 他们无法了解整个市场!

● 到1940年,学生在毕业前两年就被聘用了。

● 这对医院和学生都不利!

● 为了控制市场,医学院停止在共同同意的日期之前发布学生数据。

● 这导致了“爆炸性的提议”,市场持续时间缩短和混乱。

市场设计

● 我们能否(重新)设计一个厚实、安全和及时的市场?

● 国家住院医生匹配计划 - 市场设计的一个(大部分)成功故事

匹配居民和医院 - 一个清算所

• 一组学生 S = \{s_1,...,s_n\}

• 一组医院 H=\{h_1,...,h_m\}

• 每个学生 s \in S 都对 H 有一个严格的偏好顺序,表示为 \succ_s

• 每个医院 h \in H 都对 S 有一个严格的偏好顺序,表示为 \succ_h

• 一个匹配 M:S\rightarrow H 将每个学生映射到一个医院。

• 为了简单起见,假设 n=m (否则,可以插入由另一方最不喜欢的虚拟学生/医院)。

初始匹配机制

• 让 M_{ij }  是所有学生-医院对 (s,h) 的集合,其中学生 s 将医院 h 排在第 i 个位置,而医院 h 将学生 s 排在第 j 个位置。
• 按照顺序匹配所有对  M_{11},M_{12},M_{21},M_{22},M_{23},M_{32},M_{33}.....

稳定匹配

• 如果一对 (s,h) \in S \times H 阻碍了 M,如果 h \succ_s M(s) 并且  s \succ_h M^{-1}(h)
• 如果没有阻碍对,则称匹配为稳定的。

1. 总是存在吗?

答案是肯定的。对于任何给定的偏好列表,总是存在至少一个稳定匹配。这是由Gale和Shapley在他们的经典论文中证明的,他们为此提出了一个算法,即Gale-Shapley延迟接受算法。

2. 可以在多项式时间内找到吗?(如果存在)

  • 是的,可以在多项式时间内找到稳定匹配。Gale-Shapley延迟接受算法就是这样一个算法,它可以在多项式时间内为给定的偏好列表找到一个稳定匹配。
  • 这个算法的基本思想是:每个未匹配的学生都向他/她的偏好列表中的医院提出提议,而医院则根据其偏好列表选择学生,并可能拒绝其他学生。这个过程会重复进行,直到所有学生都被匹配。
  • 该算法的关键是,每次迭代中,提议都是“延迟接受”的,这意味着医院不会立即接受提议,而是会等待更好的提议。

Gale-Shapley 延迟接受算法(1962)

• 从所有学生未分配开始

• 当还有未分配的学生时

    ■ 每个未分配的学生向他/她还未提议的最喜欢的医院提议。

    ■ 每个医院查看在这一轮向其提议的学生名单 + 现在分配给它的学生,选择其最喜欢的学生;所有其他学生仍然未分配。

• 返回结果匹配。

G-S算法定理

• 定理: G-S算法在最多 n^2 次迭代中终止,并得到一个稳定的匹配。

n^2 次迭代:没有学生两次向同一个医院提议。
• 以完美匹配终止(即,每个人都被匹配):
    ■ 如果没有,某个学生被所有 n 家医院拒绝。
    ■ 医院只会为了更好的学生而拒绝一个学生。
    ■ 一旦医院被匹配,它在整个过程中都保持匹配。
    ■ 所有 n 家医院都被匹配。
    ■ 矛盾!
• 完美匹配是稳定的:
    ■ 考虑一个学生和一个没有匹配到彼此的医院。
    ■ 情况1: s 从未向 h 提议。
    ■ 由于 s 按照他/她的列表顺序, s 被匹配到比 h 更好的医院。
    ■ 情况2: s h 提议并被 h 拒绝。
    ■ 这意味着 h 被匹配到比 s 更好的学生。

G-S算法公平吗?

假设学生的偏好是这样的,每个学生都将一个不同的医院排在第一位。

结果会是什么?

• 给定一个学生 s \in S,如果存在某个稳定匹配 M 使得 M(s)=h,则医院 h \in H 被称为有效的。

• 让 best(s)  是 s 的最高排名的有效医院。

• 类似地为医院定义一个有效的学生。

• 让 worst(h)  是 h 的排名最低的有效学生。

G-S算法有多公平?

• 定理:G-S算法(学生提议)分配

    ■ 每个学生  s \in S  到医院  best(s)

    ■ 每个医院  h \in H 到学生 worst(h)

• 定理:当学生提议时,G-S算法为每个学生  s \in S 分配到  best(s)

    ■ 假设出于矛盾,情况并非如此。

    ■ 让 s  是第一个被其首选医院拒绝的学生 best(s)=h

    ■ 假设在最终的匹配中, s  最终与 h'  匹配,其中h'  的排名低于她的首选 h \succ_s h'

    ■  h (她的首选)为了一个更好的学生 s' 而拒绝了 s (即,s' \succ_h s)。

    ■ 由于   s 是第一个被其最佳有效医院拒绝的学生,h\succeq _s' best(s')

    ■ 存在另一个稳定匹配 M',在该匹配中   s  h  匹配。

    ■ 假设在 M' 中, s'h''\neq h 匹配。

    ■ 我们有 h''\preceq _{s'}best(s')\preceq _{s'}h,所以h''\preceq _{s'}h

    ■ 然而,s'\succ _hs也成立,所以 (h,s')M' 中形成一个阻塞对。

    ■ 矛盾!

• 定理:G-S算法(学生提议)为每家医院分配  h \in H 到 worst(h)

    ■ 假设出于矛盾,情况并非如此

    ■ 让   s s \neq worst(h) 匹配

    ■ 我们知道 h=best(s) 和 s\succ _h worst(h)

    ■  考虑一个稳定的匹配 M' 其中  h 匹配 worst(h)

    ■ 假设  s M'中 与 h  匹配 ,其中 h' \neq h

    ■  由于 h=best(s) 我们有 h \succ_s h'

    ■  在 M' 中形成一个阻塞对 (s,h)  , 矛盾!

纳什议价解

纳什议价解是博弈论中的一个概念,特别是在合作博弈中。它描述了两个玩家如何分配一个可分配的好处,以便最大化他们的相对收益。纳什议价解的基本思想是找到一个解决方案,使得玩家之间的利益差异最大化,同时考虑到他们的不同议价能力。

S- 凸集,紧凑集

帕累托最优性

• 一个结果 (x_1,y_1)  帕累托支配另一个结果 (x_2,y_2),如果 x_1 \geq x_2y_1 \geq y_2,并且这两个不等式中至少有一个是严格的。

• 在这种情况下,(x_1,y_1)  被认为是 (x_2,y_2) 的帕累托改进。

• 一个结果 (x_,y_) 是帕累托最优的,如果它没有被任何其他结果帕累托支配。

帕累托边界

• 效率

    ■  没有结果 (v_1,v_2)  帕累托支配 (f_1(S,\vec{d}), f_1(S,\vec{d}))

这意味着在所有可能的结果中,没有一个结果在所有方面都比当前的结果更好。换句话说,当前的结果(或分配)是帕累托最优的,这意味着我们不能通过改变分配来使某人更好而不损害其他人。

• 对称性

    ■ 假设 S^T=\{(y,x):(x,y)\in S\} 并且 \vec{d}^T =(d_2,d_1); 然后 (f_1(S^T,\vec{d}^T), f_1(S^T,\vec{d}^T))=(f_2(S^T,\vec{d}^T), f_2(S^T,\vec{d}^T))

这意味着解决方案是对称的,即如果我们交换玩家的角色和他们的偏好,解决方案也会相应地交换。这是一个公平性的标准,确保解决方案不偏向任何一个玩家。

• 与无关选择的独立性 (IIA)

    ■ 让 S'\subseteq S 类似于 (f_1(S,\vec{d}), f_2(S,\vec{d})) \in S'; 然后 (f_1(S',\vec{d}), f_2(S',\vec{d}))=(f_1(S',\vec{d}), f_2(S',\vec{d}))

这意味着解决方案只取决于当前的选择集,而与其他外部选择无关。换句话说,如果我们在选择集中添加或删除某些选项,只要当前的解决方案仍然有效,它就不会改变。

• 等效表示下的不变性 (IER)

    ■ 对于任意的 

\alpha _1,\alpha _2 \in R, \vec{\beta } \in R^2: \\ f_i((\alpha _1,\alpha _2)S + \vec{\beta } ,(\alpha _1,\alpha _2)d + \vec{\beta } ) =\alpha _if_i(S,\vec{d})+\beta_i 

这意味着解决方案对线性变换是不变的。具体来说,如果我们对每个玩家的支付进行线性缩放和/或平移,解决方案也会相应地缩放和/或平移。这确保了解决方案的稳健性,即它不会因为我们如何表示支付而改变。

纳什议价解

• 最大 (v_1-d_1)(v_2-d_2) 例如 (v_1,v_2) \in S

• 定理:纳什议价解满足效率、对称性、IIA和IER

• 定理: 纳什议价解是唯一满足效率、对称性、IIA和IER的解。

检查边界

• 在范围 x \in [-1,1] 内最大化 x^3

• 求导数并将其设为零:3x^2=0 \rightarrow x=0

• 这不是最大值(也不是最小值!)

• 最大值出现在 x=1(最小值出现在 x=−1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值