稳定匹配
没有货币的市场
● 双边市场
■ 居民匹配
■ 约会网站
■ 大学录取
■ 求职市场
● 单边市场
■ 学生/课程
■ 宿舍房间分配
● 物物交换
■ 肾脏交换
■ 物物交换市场
什么构成了一个好的市场?
● 厚实
■ 有很多买家,很多卖家,很多选择...
■ 每个人都知道他们的选择
● 及时
■ 不要太快(有时间权衡决策)
■ 不要太慢(快速处理提议,新提议迅速到达)
● 安全
■ 人们在揭示偏好时不会受到伤害
■ 结果是公平的
■ 人们通过参与会更好
好市场变坏:解开
● 律师事务所想要获得优秀的法学生
● 最好在学生毕业后提供工作机会 - 这是他们质量的最强信号
● 然而,公司更喜欢提前提供 - 抢先获得优秀的二年级(或一年级)学生(可能性不大,但仍然如此)。
● 一个坏的均衡的例子
● 对公司不利
■ 根据2-3年后的预期需求进行招聘
■ 前景更加风险
● 对学生不利
■ 在只有一年后需要做出改变生活的决策
■ 不知道外面还有什么
● 使市场变薄
■ 双方在做出最终决策之前都较少地接触到所有好的选择
匹配医生和医院
● 自20世纪初以来,美国新毕业的医生必须进行住院医疗(培训期)。
● 对医生和医院来说,进行良好匹配都很重要!
● 医院开始越来越早地向学生发出工作邀请。
● 学生必须单独考虑每个提议 - 他们无法了解整个市场!
● 到1940年,学生在毕业前两年就被聘用了。
● 这对医院和学生都不利!
● 为了控制市场,医学院停止在共同同意的日期之前发布学生数据。
● 这导致了“爆炸性的提议”,市场持续时间缩短和混乱。
市场设计
● 我们能否(重新)设计一个厚实、安全和及时的市场?
● 国家住院医生匹配计划 - 市场设计的一个(大部分)成功故事
匹配居民和医院 - 一个清算所
• 一组学生
• 一组医院
• 每个学生 都对 H 有一个严格的偏好顺序,表示为
• 每个医院 都对 S 有一个严格的偏好顺序,表示为
• 一个匹配 将每个学生映射到一个医院。
• 为了简单起见,假设 (否则,可以插入由另一方最不喜欢的虚拟学生/医院)。
初始匹配机制

稳定匹配
1. 总是存在吗?
答案是肯定的。对于任何给定的偏好列表,总是存在至少一个稳定匹配。这是由Gale和Shapley在他们的经典论文中证明的,他们为此提出了一个算法,即Gale-Shapley延迟接受算法。
2. 可以在多项式时间内找到吗?(如果存在)
- 是的,可以在多项式时间内找到稳定匹配。Gale-Shapley延迟接受算法就是这样一个算法,它可以在多项式时间内为给定的偏好列表找到一个稳定匹配。
- 这个算法的基本思想是:每个未匹配的学生都向他/她的偏好列表中的医院提出提议,而医院则根据其偏好列表选择学生,并可能拒绝其他学生。这个过程会重复进行,直到所有学生都被匹配。
- 该算法的关键是,每次迭代中,提议都是“延迟接受”的,这意味着医院不会立即接受提议,而是会等待更好的提议。
Gale-Shapley 延迟接受算法(1962)
• 从所有学生未分配开始
• 当还有未分配的学生时
■ 每个未分配的学生向他/她还未提议的最喜欢的医院提议。
■ 每个医院查看在这一轮向其提议的学生名单 + 现在分配给它的学生,选择其最喜欢的学生;所有其他学生仍然未分配。
• 返回结果匹配。
G-S算法定理
• 定理: G-S算法在最多 次迭代中终止,并得到一个稳定的匹配。
G-S算法公平吗?
假设学生的偏好是这样的,每个学生都将一个不同的医院排在第一位。
结果会是什么?
• 给定一个学生 ,如果存在某个稳定匹配
使得
,则医院
被称为有效的。
• 让 是
的最高排名的有效医院。
• 类似地为医院定义一个有效的学生。
• 让 是
的排名最低的有效学生。
G-S算法有多公平?
• 定理:G-S算法(学生提议)分配
■ 每个学生 到医院
,
■ 每个医院 到学生
。
• 定理:当学生提议时,G-S算法为每个学生 分配到
。
■ 假设出于矛盾,情况并非如此。
■ 让 是第一个被其首选医院拒绝的学生
。
■ 假设在最终的匹配中, 最终与
匹配,其中
的排名低于她的首选
。
■ (她的首选)为了一个更好的学生
而拒绝了
(即,
)。
■ 由于 是第一个被其最佳有效医院拒绝的学生,
。
■ 存在另一个稳定匹配 ,在该匹配中
与
匹配。
■ 假设在 中,
与
匹配。
■ 我们有 ,所以
。
■ 然而,也成立,所以
在
中形成一个阻塞对。
■ 矛盾!
• 定理:G-S算法(学生提议)为每家医院分配 到
■ 假设出于矛盾,情况并非如此
■ 让 与
匹配
■ 我们知道 和
■ 考虑一个稳定的匹配 其中
匹配
■ 假设 在
中 与
匹配 ,其中
■ 由于 我们有
■ 在 中形成一个阻塞对
, 矛盾!
纳什议价解
纳什议价解是博弈论中的一个概念,特别是在合作博弈中。它描述了两个玩家如何分配一个可分配的好处,以便最大化他们的相对收益。纳什议价解的基本思想是找到一个解决方案,使得玩家之间的利益差异最大化,同时考虑到他们的不同议价能力。
S- 凸集,紧凑集
帕累托最优性
• 一个结果 帕累托支配另一个结果
,如果
和
,并且这两个不等式中至少有一个是严格的。
• 在这种情况下, 被认为是
的帕累托改进。
• 一个结果 是帕累托最优的,如果它没有被任何其他结果帕累托支配。
帕累托边界
• 效率
■ 没有结果 帕累托支配
这意味着在所有可能的结果中,没有一个结果在所有方面都比当前的结果更好。换句话说,当前的结果(或分配)是帕累托最优的,这意味着我们不能通过改变分配来使某人更好而不损害其他人。
• 对称性
■ 假设 并且
; 然后
这意味着解决方案是对称的,即如果我们交换玩家的角色和他们的偏好,解决方案也会相应地交换。这是一个公平性的标准,确保解决方案不偏向任何一个玩家。
• 与无关选择的独立性 (IIA)
■ 让 类似于
; 然后
这意味着解决方案只取决于当前的选择集,而与其他外部选择无关。换句话说,如果我们在选择集中添加或删除某些选项,只要当前的解决方案仍然有效,它就不会改变。
• 等效表示下的不变性 (IER)
■ 对于任意的
这意味着解决方案对线性变换是不变的。具体来说,如果我们对每个玩家的支付进行线性缩放和/或平移,解决方案也会相应地缩放和/或平移。这确保了解决方案的稳健性,即它不会因为我们如何表示支付而改变。
纳什议价解
• 最大 例如
• 定理:纳什议价解满足效率、对称性、IIA和IER
• 定理: 纳什议价解是唯一满足效率、对称性、IIA和IER的解。
检查边界
• 在范围 内最大化
• 求导数并将其设为零:
• 这不是最大值(也不是最小值!)
• 最大值出现在 x=1(最小值出现在 x=−1)