博弈论-公平分配不可分割的物品

基础设定

• 玩家 N =\{1, 2, . . . , n\}

• 不可分的物品 G = \{g_1, g_2, . . . , g_m\}

• 玩家 i  对物品 g 有价值 v_i(g)

每个玩家对每个物品都有一个特定的价值评估。这意味着,例如,玩家A可能认为一辆车值$10,000,而玩家B可能认为它值$15,000。这种价值评估是主观的,并基于玩家的偏好和需求。

• 除非另有说明,否则假设估值是可加的: 对于所有 G' \subseteq Gv_i(G') = \sum_{g\in G'}v_i(g)

    ■ 优点:容易引出(每个代理有 m 个值而不是 2^m 个值)

    ■ 缺点:不允许互补/替代

• 分配是物品的一个划分,A = (A_1, A_2, . . . , A_n),其中 捆绑 A_i 分配给玩家 i 。

公平观念

• 什么时候分配是公平的?

• 比例性:对于所有 i\in N , \ v_i(A_i)\geq \frac{1}{n} \cdot v_i(G)

    ■ i 是玩家

    ■ N 是玩家集合

    ■  v_i(A_i) 是玩家 i  对他得到的物品 A_i 的价值

    ■ v_i(G) 是玩家 i  对所有物品 G 的总价值

    ■ n 是玩家的总数

• 无羡慕:对于所有 i,j\in N , \ v_i(A_i)\geq v_j(A_j)

    ■ 玩家 i 对他得到的物品 A_i 的价值至少与玩家 j  对玩家 j  得到的物品 A_j​ 的价值一样高。

• 问题: 对于 n = 2,哪一个观念更强? 对于 n ≥ 3 呢?

    ■ 对于 n = 2,无羡慕和比例性是等价的。

    ■ 对于 n ≥ 3,无羡慕比比例性更强。

    ■ 无羡慕 ⇒ 比例性:如果对于所有的 i,j\in N , \ v_i(A_i)\geq v_j(A_j) ,那么 n \cdot v_i(A_i) \ge v_i(A_1) + · · · + v_i(A_n) = v_i(G) , 所以 v_i(A_i) \ge \frac {1}{n}\cdot v_i(G) 。

    ■ 比例性 ⇒/ 无羡慕:假设 m = n。玩家1对每个商品的价值都是1,而其他玩家对所有商品的价值都是0。 A_1 = \{g_1\}, \ A_2 = \{g_2, ... , g_m\},而 A_3, . . . , A_n 是空的。

在这种情况下,每个玩家都得到了他们对所有物品总价值的 1/n 或更多,所以这满足了比例性。但是,玩家 1 可能会羡慕玩家 2,因为玩家 2 得到了更多的物品,所以这不满足无羡慕。

• 比例性 / 无羡慕不是经常满足的!

最大效用福利 & EF1

• 最大化效用福利,即玩家效用的总和。

• 这简单地意味着我们将每个商品给予对它有最高价值的玩家(任意打破平局)。

玩家g1g2g3g4g5g6g7g8
1101010101010103
2999999910

• 除一个商品外的无羡慕 (EF1):玩家 i 可能羡慕玩家 j ,但通过从 j 的包裹中移除一个商品可以消除这种羡慕。 形式上,对于任何 i,j\in N,如果 A_j = \phi ,那么存在 g \in A_j 使得 v_i(A_i) \ge v_i(A_j / \{g\})

    ■ 这是一个比无羡慕稍微宽松一点的公平观念。它允许玩家 i 羡慕玩家j ,但只要从玩家j 的物品中移除一个物品,这种羡慕就可以被消除。

    ■ 形式上,这意味着如果玩家 i 对他得到的物品的价值小于玩家j对他得到的物品的价值,那么至少有一个物品可以从玩家j的物品中移除,使得玩家 i 不再羡慕玩家 j 

• 最大化效用福利可能不满足EF1。

循环算法

• EF1可以通过循环算法得到满足:让玩家轮流从剩余的商品中选择他们最喜欢的商品,按照1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . .的顺序,直到商品用完为止。

• EF1可以通过循环算法得到满足:让玩家轮流从剩余的商品中选择他们最喜欢的商品,按照1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . .的顺序,直到商品用完为止。

• 证明: 如果 i 在循环排序中领先于j ,那么在每一个“轮次”中, i 都不会嫉妒j 。 如果 i 落后于j ,我们考虑从i的第一次选择开始的第一轮。那么 i 在j 的第一个商品之前都不会嫉妒j 。

• 额外奖励:得到的分配总是平衡的。

消除嫉妒循环算法

• 通用的单调估值:对于任何 S\subseteq T \subseteq G,都有 v_i(S) \leq v_i(T)

• 我们仍然可以使用消除嫉妒循环算法得到一个EF1分配。

    1 按任意顺序一次分配一个商品。

    2 维护一个嫉妒图,玩家作为其顶点,如果i  在当前(部分)分配中嫉妒j ,则有一个有向边i \rightarrow j

    3 在每一步中,下一个商品被分配给没有入边的玩家。任何出现的循环都通过将j 的包给 i  来消除,对于循环中的任何边i \rightarrow j

• 声明1:在每一步中,消除循环的过程必须结束。每次我们消除一个循环,效用总和都会增加。另一种看法是,嫉妒边的数量减少了。

• 声明2:当消除循环的过程结束时,存在一个未被嫉妒的玩家(即在嫉妒图中的一个源)。 反证法证明。如果a被b嫉妒,b被c嫉妒,...,那么我们将在嫉妒图中得到一个循环。

• 声明3:在每一步中,部分分配是EF1。 我们将一个商品分配给一个未被嫉妒的玩家,所以对该玩家的任何嫉妒都最多只有一个商品(即新分配的商品)。

最大纳什福利

• 分配的纳什福利是玩家效用的乘积:\prod _{i=1}^nv_i(M_i)

• 定理: 最大化纳什福利的分配,称为最大纳什福利(MNW)分配,是EF1。

• 如果MNW = 0,最大化具有正效用的玩家数量,然后在这些玩家中最大化纳什福利。

• 证明概述:

    ■ 假设出于矛盾,即使从 j 的包中移除任何商品,玩家 i 仍然嫉妒玩家 j 

    ■ 考虑 j 的包中最小化比率v_j(g)/v_i(g) 的商品 g

    ■ 将 g 移到 i 的包中会增加纳什福利。

奖励:所得到的分配总是帕累托最优的:我们不能使某个玩家更好而不使另一个玩家更差。

EFX

• 嫉妒自由到一个好处(EF1):

    ■ 对于任意的 i,j\in N,如果 A_j = \phi,则存在  g \in A_j 使得 v_i(A_i) \ge v_i(A_j / \{g\})

    ■ “如果从你的包裹中移除某个商品g,我就不再嫉妒你了。”

• 对于任何好处的嫉妒自由(EFX):

    ■ 对于任意的  i,j\in N 和任意的    g \in A_j ,我们有 v_i(A_i) \ge v_i(A_j / \{g\})

    ■ “如果从你的包裹中移除任何商品g,我就不再嫉妒你了。” 无嫉妒 ⇒ EFX ⇒ EF1

• 嫉妒自由 ⇒ EFX ⇒ EF1

EF1 vs EFX

• 示例:

玩家g1g2g3
1223
2441

    ■ 分配 A_1 = \{g_1\}A_2 = \{g_2, g_3\} 是 EF1 但不是 EFX。

A1的效用 = 2

A2的效用 = 4 + 1 = 5

玩家1对 {g1} 的估值是2,而对 {g2, g3} 的总估值是5。这意味着玩家1嫉妒玩家2,因为玩家2的包裹的总价值(5)大于玩家1的包裹的价值(2)。

但是,如果我们从玩家2的包裹中移除g3,玩家1对剩下的商品g2的估值是2,这是小于等于他对自己包裹中的商品g1的估值(2)。因此,玩家1不再嫉妒玩家2。这个分配是EF1但不是EFX。

    ■ 分配 A_1 = \{g_3\}A_2 = \{g_1, g_2\} 是 EF1 且是 EFX。

玩家1对 {g3} 的估值是3,而对 {g1, g2} 的总估值是4。这意味着玩家1确实嫉妒玩家2,因为玩家2的包裹的总价值(8)大于玩家1的包裹的价值(3)。

但是,如果我们从玩家2的包裹中移除g1,玩家1对剩下的商品g2的估值是2,这是小于他对自己包裹中的商品g3的估值(3)。同样,如果我们移除g2,玩家1对剩下的商品g1的估值也是2,这也是小于他对自己包裹中的商品g3的估值。

因此,无论我们从玩家2的包裹中移除哪个商品,玩家1都不会嫉妒玩家2。

    ■ 轮流、消除嫉妒周期和最大纳什福利的输出可能不满足 EFX。

    ■ 问题:是否总是存在一个 EFX 分配?

• 当 n = 2 时,总是存在一个 EFX 分配。

    ■ “切割和选择”

    ■ 第一个玩家将物品分成两束,她认为这两束尽可能相等。

    ■ 第二个玩家选择他更喜欢的束。

    ■ 第一个玩家将是 EFX,第二个玩家将是无嫉妒的。

• 对于 n = 3,保证存在(证明要复杂得多)。

• 对于 n ≥ 4,这个问题还没有答案!

最大最小份额

• 比例性的一个放宽是最大最小份额(MMS)。

• 可以通过执行以下思想实验来计算玩家的 MMS:玩家将物品分成 n 个束,以使最小值束的价值最大化。

玩家g1g2g3g4
1111051
21612
38749

    ■ 玩家1的分区:{g1},{g2},{g3, g4} ⇒ MMS1 = 6

    ■ 玩家2的分区:{g1, g3},{g2},{g4} ⇒ MMS2 = 2

    ■ 玩家3的分区:{g1},{g2, g3},{g4} ⇒ MMS3 = 8

• 最大最小份额是比例性的放宽:MMS_i \le \frac{v_i(G)}{n}

• 当有两个玩家时,总是存在给每个玩家至少他/她的最大最小份额的分配... ...

• 但是当有至少三个玩家时就不是这样了!

• 然而,对于任何数量的玩家,我们总是可以给每个玩家至少他/她最大最小份额的3/4。

• 为每个玩家分配至少他/她的最大最小份额的分配在有两个玩家时总是存在的。

• 证明:再次使用“切割和选择”方法。

    ■ 爱丽丝将物品分成两部分,这两部分在她看来尽可能地具有相等的价值。

    ■ 任何一部分都至少为她提供了她的 MMS 的价值。

    ■ 鲍勃选择他更喜欢的一部分。

    ■ 鲍勃是不嫉妒的(因此是按比例的 & 至少得到了他的 MMS)

查询复杂性

• 我们需要查询玩家多少次?    

    ■ 通过每次查询,算法可以找出某个玩家对某一组物品的价值。

• 当估值不是可加的时,这尤其相关。

• 即使在单调估值的情况下,也可以使用 O(nm) 的查询来实现嫉妒周期消除算法。

    ■ 为了构建嫉妒图,只需查询每个代理对每个部分分配中的 n 个束的价值。

    ■ 由于有 m 个部分分配,所以查询次数是 O(nm)。

这里的 n 是玩家数量,m 是物品数量。为了构建嫉妒图,我们只需要询问每个玩家对每个部分分配中的 n 个束的价值。由于有 m 个部分分配,所以查询次数是 O(nm)。

• 对于两个具有单调估值的代理,O(log m) 的查询就足够了!

    ■ 将物品排列在一条线上,并执行切割和选择。

    ■ 第一个代理可以使用二分搜索找到一个 EF1 切割。

这是因为我们可以使用二分搜索来找到一个 EF1 切割。这种方法非常高效,因为它每次都将搜索空间减半。

• 同样的技术不能用于 EFX,因为可能不存在在线上的 EFX 分区。

    ■ 示例:m = 3,值为 1, 2, 1。

• 任何确定性的 EF1 算法都需要 Ω(log m) 的查询。

    ■ 即使对于每个玩家对两个物品的价值为1,对其余物品的价值为0的相同的可加估值也是如此。

    ■ 在任何 EF1 分配中,两个有价值的物品必须被分开。

• 通过对手论证来证明。

    ■ 最初让 G′ = G。

    ■ 假设算法查询 v(H)。

    ■ 如果 |G′ ∩ H| ≥ |G′| 2 ,对手回答 2 并用 G′ ∩ H 替换 G′。

    ■ 否则,对手回答 0 并用 G′ \ H 替换 G′。

    ■ 由于在开始时 |G′| = m,并且在每次查询后都会减少最多 2 的因子,所以需要 Ω(log m) 的查询。  

• 任何确定性的 EFX 算法都需要指数级的 m 的查询次数。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值