LCD 画线方法及C语言实现

1 篇文章 0 订阅

显示器上与数学上直线定义的区别:

     数学上的直线是没有宽度、由无数个点构成的集合,显然,光栅显示器只能近地似显示直线.当我们对直线进行光栅化时,需要在显示器有限个象素中,确定最佳逼近该直线的一组象素,并且按扫描线顺序,对这些象素进行写操作,这个过程称为用显示器绘制直线或直线的扫描转换. 

    由于在一个图形中,可能包含成千上万条直线,所以要求绘制算法应尽可能地快.本节我们介绍一个象素宽直线绘制的三个常用算法:数值微分法(DDA)、中点画线法和Bresenham算法. 

   (1)数值微分(DDA)法 

    设过端点P0(x0 ,y0)、P1(x1 ,y1)的直线段为L(P0 ,P1),则直线段L的斜率为k=(y1-y0)/(x1-x0).要在显示器显示L,必须确定最佳逼近L的像素集合.我们从L的起点P0的横坐标x0向L的终点P1的横坐标x1步进,取步长=1(个象素),用L的直线方程y=kx+b计算相应的y坐标,并取象素点(x,round(y))作为当前点的坐标. 

    因为: yi+1 =  kxi+1+b  =  kxi+b+kDx  =  yi+kDx 

    所以,当Dx =1; yi+1 = yi+k.也就是说,当x每递增1,y递增k(即直线斜率).根据这个原理,我们可以写出DDA画线算法程序. 

DDA画线算法程序: 

void DDALine(int x0,int y0,int x1,int y1,int color) 



   int x; 

   float dx, dy, y, k; 

  dx = x1-x0;dy=y1-y0; 

   k=dy/dx,;y=y0; 

   for (x=x0;x< x1;x++){ 

      drawpixel (x, int(y+0.5), color); 

      y=y+k; 

   } 



注意:我们这里用整型变量color表示象素的颜色和灰度. 

举例:用DDA方法扫描转换连接两点P0(0,0)和P1(5,2)的直线段. 

x int(y+0.5) y+0.5 

0     0        0 

1     0      0.4+0.5 

2     1      0.8+0.5 

3     1      1.2+0.5 

4     2      1.6+0.5 

 
图2.1.1 直线段的扫描转换 

    注意:上述分析的算法仅适用于|k| ≤1的情形.在这种情况下,x每增加1,y最多增加1.当 |k| > 1时,必须把x,y地位互换,y每增加1,x相应增加1/k.在这个算法中,y与k必须用浮点数表示,而且每一步都要对y进行四舍五入后取整,这使得它不利于硬件实现. 

(2)中点画线法 

    假定直线斜率k在0~1之间,当前象素点为(xp,yp),则下一个象素点有两种可选择点P1(xp+1,yp)或 P2(xp+1,yp+1).若P1与P2的中点(xp+1,yp+0.5)称为M,Q为理想直线与x=xp+1垂线的交点.当M在Q的下方时,则取P2 应为下一个象素点;当M在Q的上方时,则取P1为下一个象素点.这就是中点画线法的基本原理. 

 

图2.1.2 中点画线法每步迭代涉及的象素和中点示意图 

    下面讨论中点画线法的实现.过点(x0,y0)、(x1, y1)的直线段L的方程式为F(x, y)=ax+by+c=0,其中,a=y0-y1, b=x1-x0, c=x0y1-x1y0,欲判断中点M在Q点的上方还是下方,只要把M代入F(x,y),并判断它的符号即可.为此,我们构造判别式: 

    d=F(M)=F(xp+1, yp+0.5)=a(xp+1)+b(yp+0.5)+c 

    所以: 

    当d<0时,M在L(Q点)下方,取P2为下一个象素; 

    当d>0时,M在L(Q点)上方,取P1为下一个象素; 

    当d=0时,选P1或P2均可,约定取P1为下一个象素; 

    注意到d是xp, yp的线性函数,可采用增量计算,提高运算效率: 

    若当前象素处于d>=0情况,则取正右方象素P1(xp+1, yp),要判下一个象素位置,应计算 d1=F(xp+2, yp+0.5)=a(xp+2)+b(yp+0.5)=d+a,增量为a. 

    若d<0时,则取右上方象素P2(xp+1, yp+1).要判断再下一象素,则要计算d2= F(xp+2, yp+1.5)=a(xp+2)+b(yp+1.5)+c=d+a+b ,增量为a+b.画线从(x0, y0)开始,d的初值 d0=F(x0+1, y0+0.5)=F(x0, y0)+a+0.5b,因  F(x0, y0)=0,所以d0=a+0.5b. 

    由于我们使用的只是d的符号,而且d的增量都是整数,只是初始值包含小数.因此,我们可以用2d代替d来摆脱小数,写出仅包含整数运算的算法程序. 

中点画线算法程序: 

void Midpoint Line (int x0,int y0,int x1, int y1,int color) 

{   int a, b, d1, d2, d, x, y; 

     a=y0-y1; b=x1-x0;d=2*a+b; 

    d1=2*a;d2=2* (a+b); 

    x=x0;y=y0; 

    drawpixel(x, y, color); 

    while (x<x1){
 
    if (d<0)   {x++;y++; d+=d2; } 

        else      {x++; d+=d1;} 

        drawpixel (x, y, color); 

    } /* while */ 

} /* mid PointLine */ 

  举例:用中点画线方法扫描转换连接两点P0(0,0)和P1(5,2)的直线段. 

a=y0-y1=-2; b=x1-x0=5; d0=2*a+b=1;d1=2*a=-4;d2=2*(a+b)=6 

x   y   d 

0   0   1 

1   0   -3 

2   1   3 

3   1   -1         

4   2    5                                 

5   2   15 

 
图2.1.3 中点画线法 

(3)Bresenham算法 

    Bresenham算法是计算机图形学领域使用最广泛的直线扫描转换算法.仍然假定直线斜率在0~1之间,该方法类似于中点法,由一个误差项符号决定下一个象素点. 

    算法原理如下:过各行各列象素中心构造一组虚拟网格线.按直线从起点到终点的顺序计算直线与各垂直网格线的交点,然后确定该列象素中与此交点最近的象素.该算法的巧妙之处在于采用增量计算,使得对于每一列,只要检查一个误差项的符号,就可以确定该列的所求象素. 

 
    如图2.1.4所示,设直线方程为yi+1=yi+k(xi+1-xi)+k.假设列坐标象素已经确定为xi,其行坐标为yi.那么下一个象素的列坐标为xi+1,而行坐标要么为yi,要么递增1为yi+1.是否增1取决于误差项d的值.误差项d的初值d0=0,x坐标每增加1,d的值相应递增直线的斜率值k,即d=d+k.一旦  d≥1,就把它减去1,这样保证d在0、1之间.当d≥0.5时,直线与垂线x=xi+1交点最接近于当前象素(xi,yi)的右上方象素(xi+1,yi+1);而当d<0.5时,更接近于右方象素(xi+1,yi).为方便计算,令e=d-0.5,e的初值为-0.5,增量为k.当e≥0时,取当前象素(xi,yi)的右上方象素(xi+1,yi+1);而当e<0时,取(xi,yi)右方象素(xi+1,yi). 
图2.1.4 Bresenham算法所用误差项的几何含义 

Bresenham画线算法程序: 

void Bresenhamline (int x0,int y0,int x1, int y1,int color) 



    int x, y, dx, dy; 

    float k, e; 

    dx = x1-x0;dy = y1- y0;k=dy/dx; 

    e=-0.5; x=x0,;y=y0; 

    for (i=0;i<dx;i++)
 
    {   drawpixel (x, y, color); 

        x=x+1;e=e+k; 

        if (e >= 0) { y++; e=e-1;} 

    } 



举例:用Bresenham方法扫描转换连接两点P0(0,0)和P1(5,2)的直线段. 

x   y   e 

0   0   -0.5 

1   0   -0.1 

2   1   -0.7 

3   1   -0.3 

4   2   -0.9 

5   2   -0.5 

 

图2.1.5 Bresenham算法 

    上述Bresenham算法在计算直线斜率与误差项时用到小数与除法.可以改用整数以避免除法.由于算法中只用到误差项的符号,因此可作如下替换:2*e*dx. 

改进的Bresenham画线算法程序: 

/*本代码并不完善,只是反映了原理,要真正实现任意画线还需完善*/

void lcd_draw_line(u32 x0,u32 y0,u32 x1, u32 y1,u32 color)
{
    u32 x;
    u32 y;
    u32 i;
    int e;
    int dx;
    int dy;

    dx = x1 - x0;
    dy = y1 - y0;
    e = -dx;
    x = x0;
    y = y0;
   
    for (i=0; i<dx; i++)
    {
        lcd_draw_point(x, y, color); 
        x++;
        e += 2*dy;
       
        if (e >= 0)
        {
            y++;
            e -= 2*dx;
        }
    }
}

 

 

转载处链接:

http://blog.csdn.net/leichelle/article/details/7560402

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值