【洛谷1967】【NOIP2013】货车运输

3 篇文章 0 订阅
1 篇文章 0 订阅

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入输出格式

输入格式:

输入文件名为 truck.in。

输入文件第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道

路。接下来 m 行每行 3 个整数 x、 y、 z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意: x 不等于 y,两座城市之间可能有多条道路

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意: x 不等于 y

输出格式:

输出文件名为 truck.out。

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货

车不能到达目的地,输出-1。

输入输出样例

输入样例#1:
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
输出样例#1:
3
-1
3

说明

对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q< 1,000;

对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q< 1,000;

对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q< 30,000,0 ≤ z ≤ 100,000

题解

这题主要是求s到目标点t的所有路径(找出最小边权)中最小的边权最大是多少。

所以可以先用kruskal求一下最大生成树,去掉没用的边。用并查集先判断一下是否联通,然后再求lca,倍增的过程中求一下最小值就可以A掉这题了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define INF 10000000
using namespace std;
const int maxn=50010;
int pre[maxn],last[maxn],num,other[maxn];
int w[maxn],dis[maxn],ans=INF,from,to;
int fa[maxn][25],MIN[maxn][25],father[maxn];
bool vis[maxn];
int n,m,t;
void add(int x,int y,int z){
	num++;
	pre[num]=last[x];
	last[x]=num;
	other[num]=y;
	w[num]=z;
}
struct edge{
	int u,v,w;
}e[maxn*2];
bool cmp(edge a,edge b){
	return a.w>b.w;
}
int find(int x){
	if(x==father[x])
	return x;
	return father[x]=find(father[x]);
}
void kruskal(){
	for(int i=1;i<=n;i++)
	father[i]=i;
	
	for(int i=1;i<=m;i++){
		int f1=find(e[i].u),f2=find(e[i].v);
		if(f1!=f2){
			father[f1]=f2;
			add(e[i].u,e[i].v,e[i].w);
			add(e[i].v,e[i].u,e[i].w);
		}
	}
}
void dfs(int x){
	vis[x]=1;
	for(int i=last[x];i;i=pre[i]){
		int v=other[i];
		if(!vis[v]){
			fa[v][0]=x;
			MIN[v][0]=w[i];
			dis[v]=dis[x]+1;
			dfs(v); 
		}
	}
}
void bz(){
	for(int j=1;j<=20;j++)
	for(int i=1;i<=n;i++){
		fa[i][j]=fa[fa[i][j-1]][j-1];
		MIN[i][j]=min(MIN[i][j-1],MIN[fa[i][j-1]][j-1]);
	}	
}
int lca(int x,int y){
	ans=INF; 
	int f1=find(x),f2=find(y);
	if(f1!=f2) return -1;
	if(dis[x]>dis[y])
	swap(x,y);
	int d=dis[y]-dis[x];
	for(int j=20;j>=0;j--){
		if(d&(1<<j)){
		   ans=min(ans,MIN[y][j]);
		   y=fa[y][j];
		}
	}
	if(x==y)
	return ans;
	for(int j=20;j>=0;j--){
		if(fa[x][j]!=fa[y][j]){
			ans=min(ans,min(MIN[x][j],MIN[y][j]));
			x=fa[x][j];
			y=fa[y][j];
		}
	}
	return ans=min(ans,min(MIN[x][0],MIN[y][0]));
} 
int main()
{
	int x,y,z;
	scanf("%d%d",&n,&m);
	
	for(int i=1;i<=m;i++){
		scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
	}
	
	sort(e+1,e+m+1,cmp);
	
	kruskal();
	
	
	for(int j=0;j<=20;j++)
	for(int i=1;i<=n;i++)
	MIN[i][j]=INF; 
	
	
	for(int i=1;i<=n;i++)
	if(!vis[i])
	dfs(i);
	
	bz(); 
	
	
	scanf("%d",&t);
	for(int i=1;i<=t;i++){
		scanf("%d%d",&from,&to);
		printf("%d\n",lca(from,to));
	}
	
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值