A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
输入输出格式
输入格式:输入文件名为 truck.in。
输入文件第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道
路。接下来 m 行每行 3 个整数 x、 y、 z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意: x 不等于 y,两座城市之间可能有多条道路 。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意: x 不等于 y 。
输出格式:输出文件名为 truck.out。
输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货
车不能到达目的地,输出-1。
输入输出样例
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
3
-1
3
说明
对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q< 1,000;
对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q< 1,000;
对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q< 30,000,0 ≤ z ≤ 100,000
题解
这题主要是求s到目标点t的所有路径(找出最小边权)中最小的边权最大是多少。
所以可以先用kruskal求一下最大生成树,去掉没用的边。用并查集先判断一下是否联通,然后再求lca,倍增的过程中求一下最小值就可以A掉这题了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define INF 10000000
using namespace std;
const int maxn=50010;
int pre[maxn],last[maxn],num,other[maxn];
int w[maxn],dis[maxn],ans=INF,from,to;
int fa[maxn][25],MIN[maxn][25],father[maxn];
bool vis[maxn];
int n,m,t;
void add(int x,int y,int z){
num++;
pre[num]=last[x];
last[x]=num;
other[num]=y;
w[num]=z;
}
struct edge{
int u,v,w;
}e[maxn*2];
bool cmp(edge a,edge b){
return a.w>b.w;
}
int find(int x){
if(x==father[x])
return x;
return father[x]=find(father[x]);
}
void kruskal(){
for(int i=1;i<=n;i++)
father[i]=i;
for(int i=1;i<=m;i++){
int f1=find(e[i].u),f2=find(e[i].v);
if(f1!=f2){
father[f1]=f2;
add(e[i].u,e[i].v,e[i].w);
add(e[i].v,e[i].u,e[i].w);
}
}
}
void dfs(int x){
vis[x]=1;
for(int i=last[x];i;i=pre[i]){
int v=other[i];
if(!vis[v]){
fa[v][0]=x;
MIN[v][0]=w[i];
dis[v]=dis[x]+1;
dfs(v);
}
}
}
void bz(){
for(int j=1;j<=20;j++)
for(int i=1;i<=n;i++){
fa[i][j]=fa[fa[i][j-1]][j-1];
MIN[i][j]=min(MIN[i][j-1],MIN[fa[i][j-1]][j-1]);
}
}
int lca(int x,int y){
ans=INF;
int f1=find(x),f2=find(y);
if(f1!=f2) return -1;
if(dis[x]>dis[y])
swap(x,y);
int d=dis[y]-dis[x];
for(int j=20;j>=0;j--){
if(d&(1<<j)){
ans=min(ans,MIN[y][j]);
y=fa[y][j];
}
}
if(x==y)
return ans;
for(int j=20;j>=0;j--){
if(fa[x][j]!=fa[y][j]){
ans=min(ans,min(MIN[x][j],MIN[y][j]));
x=fa[x][j];
y=fa[y][j];
}
}
return ans=min(ans,min(MIN[x][0],MIN[y][0]));
}
int main()
{
int x,y,z;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
}
sort(e+1,e+m+1,cmp);
kruskal();
for(int j=0;j<=20;j++)
for(int i=1;i<=n;i++)
MIN[i][j]=INF;
for(int i=1;i<=n;i++)
if(!vis[i])
dfs(i);
bz();
scanf("%d",&t);
for(int i=1;i<=t;i++){
scanf("%d%d",&from,&to);
printf("%d\n",lca(from,to));
}
return 0;
}