【BZOJ1003】【ZJOI】物流运输

Description

  物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

Input

  第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

Output

  包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
题解
一道dp+最短路。
这其实是一道区间dp,由于需要求最小费用,所以要枚举从第几天开始改变路线。还要预处理i~j天的最少费用。而最小费用要用最短路。
dp方程:dp[i]=dp[j]+cost[j+1][i]+K。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define INF 2e9
using namespace std;
const int maxn=1500;
int n,m,K,e;
int pre[maxn*2],last[maxn],other[maxn*2],num;
int dis[maxn],w[maxn*2],cost[maxn][maxn];//i到j天都走这条路的花费 
bool vis[maxn],flag[maxn],broken[maxn][maxn];
int dp[maxn];//前i天的最优解 
queue<int>q;
void add(int x,int y,int z){
    num++;
    pre[num]=last[x];
    last[x]=num;
    other[num]=y;
    w[num]=z;
}
void prepare(int y,int z){
    for(int i=1;i<=m;i++)
    for(int j=y;j<=z;j++){
        if(broken[i][j])
        flag[i]=1;
    }
}
int spfa(int y,int z){
    memset(flag,0,sizeof(flag));
    memset(dis,0X7f,sizeof(dis));
    memset(vis,0,sizeof(vis));
    prepare(y,z);
    while(!q.empty()) q.pop(); 
    q.push(1);
    vis[1]=1;
    dis[1]=0;
    while(!q.empty()){
        int t=q.front();
        q.pop();
        vis[t]=0;
        for(int i=last[t];i;i=pre[i]){
            int u=other[i];
            if(dis[u]>dis[t]+w[i]&&!flag[u]){
                dis[u]=dis[t]+w[i];
                if(!vis[u]){
                    vis[u]=1;
                    q.push(u);
                }
            }
        }
    }
    return dis[m]; 
}
int main(){
    int x,y,z;
    scanf("%d%d%d%d",&n,&m,&K,&e);
    for(int i=1;i<=e;i++){
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);
    }
    int d,p;
    scanf("%d",&d);
    for(int i=1;i<=d;i++){
        scanf("%d%d%d",&p,&x,&y);
        for(int j=x;j<=y;j++)
        broken[p][j]=true;
    }
    for(int i=1;i<=n;i++)
    for(int j=i;j<=n;j++){
        cost[i][j]=spfa(i,j);//不能直接乘,会爆 
    }
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    if(cost[i][j]<INF)
    cost[i][j]*=(j-i+1);
     
    memset(dp,127/3,sizeof(dp));
    for(int i=1;i<=n;i++)
    dp[i]=cost[1][i];
     
    for(int i=2;i<=n;i++)
    for(int j=1;j<i;j++){
        dp[i]=min(dp[i],dp[j]+cost[j+1][i]+K); 
    }
    printf("%d\n",dp[n]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值