Description
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.
Input
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
Output
输出最小费用
Sample Input
3
4
2
1
4
Sample Output
至少先把dp方程写出来吧:f[i]=min( f[j] +[sum[i]-sum[j]+i-(j+1)-L]^2 ),j<=i (sum[i]为前缀和
f[i]表示i为其中一个断点,搞完前i个数的最小总和
为了简化方程,我们设s[i]=sum[i]+i;L=L+1;
那么原方程则为 f[i]=min(f[j]+(s[i]-s[j]-L)^2),j<=i
平方拆开、移项能得到:2*(s[i]-L)*s[j]+f[i]=f[j]+s[j]^2
k=2*(s[i]-L);x=s[j];y=f[j]+s[j]*2;
因为求最小值 故维护一个下凸包
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
typedef unsigned long long ll;
using namespace std;
const int maxn=50010;
//f[i]=sum[i]+i;c=1+L;
//k<j<i
ll dp[maxn],q[maxn],sum[maxn];
ll n,L;
int head,tail;
ll getdp(int i,int j){
return dp[j]+(sum[i]-sum[j]+i-j-1-L)*(sum[i]-sum[j]+i-j-1-L);
}
ll get1(int j,int k){
return dp[j]+(sum[j]+j)*(sum[j]+j)+2*(sum[j]+j)*(1+L)-(dp[k]+(sum[k]+k)*(sum[k]+k)+2*(sum[k]+k)*(1+L));
}
ll get2(int j,int k){
return 2*(sum[j]+j-sum[k]-k);
}
int main(){
scanf("%d%d",&n,&L);
for(int i=1;i<=n;i++){
scanf("%lld",&sum[i]);
sum[i]+=sum[i-1];
}
head=tail=0;
for(int i=1;i<=n;i++){
while(head<tail&&get1(q[head+1],q[head])<=get2(q[head+1],q[head])*(sum[i]+i))
head++;
dp[i]=getdp(i,q[head]);
while(head<tail&&get1(i,q[tail])*get2(q[tail],q[tail-1])<=get1(q[tail],q[tail-1])*get2(i,q[tail]))
tail--;
q[++tail]=i;
}
printf("%lld",dp[n]);
return 0;
}