【BZOJ1010】【HNOI2008】玩具装箱

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进压
缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过
压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容
器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一
个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,
如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容
器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1
题解

至少先把dp方程写出来吧:f[i]=min( f[j] +[sum[i]-sum[j]+i-(j+1)-L]^2 ),j<=i (sum[i]为前缀和 

f[i]表示i为其中一个断点,搞完前i个数的最小总和

为了简化方程,我们设s[i]=sum[i]+i;L=L+1;

那么原方程则为 f[i]=min(f[j]+(s[i]-s[j]-L)^2),j<=i

平方拆开、移项能得到:2*(s[i]-L)*s[j]+f[i]=f[j]+s[j]^2

k=2*(s[i]-L);x=s[j];y=f[j]+s[j]*2;

因为求最小值 故维护一个下凸包

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
typedef unsigned long long ll;
using namespace std;
const int maxn=50010;
//f[i]=sum[i]+i;c=1+L;
//k<j<i
ll dp[maxn],q[maxn],sum[maxn];
ll n,L;
int head,tail;
ll getdp(int i,int j){ 
	return dp[j]+(sum[i]-sum[j]+i-j-1-L)*(sum[i]-sum[j]+i-j-1-L);
}
ll get1(int j,int k){
	return dp[j]+(sum[j]+j)*(sum[j]+j)+2*(sum[j]+j)*(1+L)-(dp[k]+(sum[k]+k)*(sum[k]+k)+2*(sum[k]+k)*(1+L));
}
ll get2(int j,int k){
	return 2*(sum[j]+j-sum[k]-k);
}
int main(){
	scanf("%d%d",&n,&L);
	for(int i=1;i<=n;i++){
		scanf("%lld",&sum[i]);
		sum[i]+=sum[i-1];
	}
	head=tail=0;
	for(int i=1;i<=n;i++){
		while(head<tail&&get1(q[head+1],q[head])<=get2(q[head+1],q[head])*(sum[i]+i))
		   head++;
		dp[i]=getdp(i,q[head]);
		while(head<tail&&get1(i,q[tail])*get2(q[tail],q[tail-1])<=get1(q[tail],q[tail-1])*get2(i,q[tail]))
		   tail--;
		q[++tail]=i;
	}
	printf("%lld",dp[n]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值