小A从仓库里找出了一棵 n n个点的有根树,1号节点为这棵树的根,树上每个节点的权值为 wi wi, 大小为 ai ai。
现在他心中产生了 Q Q个疑问,每个疑问形如在 x x的子树里,选出一些大小和不超过 s s的节点(不可以重复选一个节点),最大权值和可以为多少。
输入格式
一行一个整数 n n。
n−1 n−1行两个整数 ui ui, vi vi表示一条边。
n n行每行两个整数 wi wi, ai ai表示这个点的权值和大小。
一行一个整数 Q Q。
每行两个整数 x x, s s,表示一个询问。
输出格式
Q Q行每行一个整数表示答案
样例输入
样例一
input
5
1 3
2 4
5 3
4 3
2 3
3 2
1 4
5 4
3 1
7
1 5
2 1
2 2
2 3
4 4
3 3
3 5
output
8
0
3
3
5
6
8
限制与约定
10% 10%的数据满足 n≤10,s,ai≤10,wi≤10 n≤10,s,ai≤10,wi≤10。
30% 30%的数据满足 n≤5000,s,ai≤100,wi≤106 n≤5000,s,ai≤100,wi≤106。
另外 20% 20%的数据满足树是一条链,并且 1 1是链的一端。
100% 100%的数据满足 n,s,ai≤5000,wi≤106,q≤105 n,s,ai≤5000,wi≤106,q≤105。
1s, 512MB
题解
一道树形dp。
开始zz的认为dp[j]表示最大限制为jd的最优解。dfs一下就好了,因为先访问到叶子再往上返,一个点被访问一定它的叶节点被访问。但是我忽略了同是叶子节点之间会相互影响。。。所以就W了。
言归正传。
有背包的思想。dp[i][j]表示以i这个节点的子树大小限制为j的最优解。先一遍dfs,找到一个点的father和重儿子。
在dp的时候先把一个点的值都用重儿子的值。然后再遍历其他的儿子,运用背包判断选不选。最后判断自己。这就可以算一遍然后O(1)查询了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=5010;
int pre[maxn*2],last[maxn],other[maxn*2],num,w[maxn];
int fa[maxn],size[maxn],son[maxn],a[maxn],q,n;
bool vis[maxn];
ll f[maxn][maxn];
void add(int x,int y){
num++;
pre[num]=last[x];
last[x]=num;
other[num]=y;
}
void dfs(int x){
vis[x]=1;
size[x]=1;
for(int i=last[x];i;i=pre[i]){
int v=other[i];
if(!vis[v]){
fa[v]=x;
dfs(v);
size[x]+=size[v];
son[x]=(size[v]>size[son[x]]? v: son[x]);
}
}
}
void child(int x,ll f[]){
for(int i=maxn-10;i>=a[x];i--)
f[i]=max(f[i],f[i-a[x]]+w[x]);
for(int i=last[x];i;i=pre[i])
if(other[i]!=fa[x])
child(other[i],f);
}
void dp(int x){
for(int i=last[x];i;i=pre[i]){
int v=other[i];
if(v!=fa[x])
dp(v);
}
memcpy(f[x],f[son[x]],sizeof(f[x]));
for(int i=last[x];i;i=pre[i]){
int v=other[i];
if(v!=fa[x]&&v!=son[x])
child(v,f[x]);//传进前一维,对后面一维进行操作
}
for(int i=maxn-10;i>=a[x];i--)
f[x][i]=max(f[x][i-a[x]]+w[x],f[x][i]);
}
int main(){
int x,y;
scanf("%d",&n);
for(int i=1;i<=n-1;i++){
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=1;i<=n;i++)
scanf("%d%d",&w[i],&a[i]);
dfs(1);
dp(1);
scanf("%d",&q);
for(int i=1;i<=q;i++){
scanf("%d%d",&x,&y);
printf("%lld\n",f[x][y]);
}
return 0;
}