OI赛第二场t1Last mile of the way

小A从仓库里找出了一棵 n n个点的有根树,1号节点为这棵树的根,树上每个节点的权值为 wi wi, 大小为 ai ai

现在他心中产生了 Q Q个疑问,每个疑问形如在 x x的子树里,选出一些大小和不超过 s s的节点(不可以重复选一个节点),最大权值和可以为多少。

输入格式

一行一个整数 n n

n1 n−1行两个整数 ui ui, vi vi表示一条边。

n n行每行两个整数 wi wi, ai ai表示这个点的权值和大小。

一行一个整数 Q Q

每行两个整数 x x, s s,表示一个询问。

输出格式

Q Q行每行一个整数表示答案

样例输入

样例一

input
5
1 3
2 4
5 3
4 3
2 3
3 2
1 4
5 4
3 1
7
1 5
2 1 
2 2
2 3
4 4
3 3
3 5
output
8
0
3
3
5
6
8

限制与约定

10% 10%的数据满足 n10,s,ai10,wi10 n≤10,s,ai≤10,wi≤10

30% 30%的数据满足 n5000,s,ai100,wi106 n≤5000,s,ai≤100,wi≤106

另外 20% 20%的数据满足树是一条链,并且 1 1是链的一端。

100% 100%的数据满足 n,s,ai5000,wi106,q105 n,s,ai≤5000,wi≤106,q≤105

1s, 512MB

题解

一道树形dp。

开始zz的认为dp[j]表示最大限制为jd的最优解。dfs一下就好了,因为先访问到叶子再往上返,一个点被访问一定它的叶节点被访问。但是我忽略了同是叶子节点之间会相互影响。。。所以就W了。

言归正传。

有背包的思想。dp[i][j]表示以i这个节点的子树大小限制为j的最优解。先一遍dfs,找到一个点的father和重儿子。

在dp的时候先把一个点的值都用重儿子的值。然后再遍历其他的儿子,运用背包判断选不选。最后判断自己。这就可以算一遍然后O(1)查询了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
const int maxn=5010;
int pre[maxn*2],last[maxn],other[maxn*2],num,w[maxn];
int fa[maxn],size[maxn],son[maxn],a[maxn],q,n;
bool vis[maxn];
ll f[maxn][maxn];
void add(int x,int y){
	num++;
	pre[num]=last[x];
	last[x]=num;
	other[num]=y;
}
void dfs(int x){
	vis[x]=1;
	size[x]=1;
	for(int i=last[x];i;i=pre[i]){
		int v=other[i];
		if(!vis[v]){
			fa[v]=x;
			dfs(v);
			size[x]+=size[v];
			son[x]=(size[v]>size[son[x]]? v: son[x]);
		}
	}
}
void child(int x,ll f[]){
	for(int i=maxn-10;i>=a[x];i--)
	f[i]=max(f[i],f[i-a[x]]+w[x]);
	for(int i=last[x];i;i=pre[i])
	if(other[i]!=fa[x])
	child(other[i],f);
}
void dp(int x){
	for(int i=last[x];i;i=pre[i]){
		int v=other[i];
		if(v!=fa[x])
		dp(v);
	}
	memcpy(f[x],f[son[x]],sizeof(f[x]));
	for(int i=last[x];i;i=pre[i]){
		int v=other[i];
		if(v!=fa[x]&&v!=son[x])
		child(v,f[x]);//传进前一维,对后面一维进行操作 
	}
	for(int i=maxn-10;i>=a[x];i--)
	f[x][i]=max(f[x][i-a[x]]+w[x],f[x][i]);
}
int main(){
	int x,y;
	scanf("%d",&n);
    for(int i=1;i<=n-1;i++){
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);
	}
	for(int i=1;i<=n;i++)
	scanf("%d%d",&w[i],&a[i]);
	
	dfs(1);
	dp(1); 
	scanf("%d",&q);
	for(int i=1;i<=q;i++){
		scanf("%d%d",&x,&y);
		printf("%lld\n",f[x][y]);
	}
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值