题意:
袋子里有 w w w 只白球和 b b b 只黑球 ,A和B轮流从袋子里抓,谁先抓到白色谁就赢。A每次随机抓一只,B每次随机抓完一只之后会有另一只随机老鼠跑出来。如果两个人都没有抓到白色则B赢。A先抓,问A赢的概率。
思路:
我们可以用记忆化搜索。
设
dfs(a,b)
\text{dfs(a,b)}
dfs(a,b)分别表示白球的个数为
a
a
a,和黑球的个数为
b
b
b时先手必胜的概率。
那么当没有白球的时候A必败,概率为
0
0
0。
当没有黑球时,A必胜,为
1
1
1。
那么A必胜还有一种情况就是抽中了白球,概率是
a
a
+
b
\frac{a}{a+b}
a+ba,就是从所有的里拿出白球的概率。
否则A就是抽中了黑球那么为了A胜,所以B也要抽到白球,那么就分情况讨论即可。
CODE:
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int n, m;
double f[N][N];
double dfs(int a, int b) {
if (a == 0) return 0.0;
if (b == 0) return 1.0;
if (f[a][b] > 0) return f[a][b];
double ans = 0;
ans += 1.0 * a / (a + b);
if (b == 2)
ans += 1.0 * b / (a + b) * (b - 1) / (a + b - 1) * dfs(a - 1, b - 2);
else if(b >= 3)
ans += 1.0 * b / (a + b) * (b - 1) / (a + b - 1) * (1.0 * a / (a + b - 2) * dfs(a - 1, b - 2) + 1.0 * (b - 2) / (a + b - 2) * dfs(a, b - 3));
return f[a][b] = ans;
}
int main() {
scanf("%d%d", &n, &m);
printf("%.9lf", dfs(n, m));
return 0;
}

文章描述了一个两人游戏,A和B轮流从含有白球和黑球的袋子中抽取,先抽到白球者获胜。A先手,通过记忆化搜索求解A获胜的概率。在没有白球时A必败,没有黑球时A必胜。A必胜的情况包括抽中白球或B抽中黑球后再次抽中白球。代码实现中使用了动态规划求解该概率。
8797

被折叠的 条评论
为什么被折叠?



