连续值、缺失值 、正负样本不均衡处理方法

数据挖掘笔试总结:

1.连续值、缺失值 、正负样本不均衡处理方法

缺失值:

   (1)删除含有缺失值的数据对象或属性

   (2)估计遗漏值,差值补全。

     a.均值插补  均值 或者众数

     b.利用同类均值插补

    c.极大似然估计   前提适用于大样本期望值最大化

    d.多重插补(较好)

     最近邻平均属性

     众数

    

     缺失值为随机缺失: 用a b 比较好

 

 

目前有三类处理方法:

1. 用平均值、中值、分位数、众数、随机值等替代。效果一般,因为等于人为增加了噪声。

2. 用其他变量做预测模型来算出缺失变量。效果比方法1略好。有一个根本缺陷,如果其他变量和缺失变量无关,则预测的结果无意义。如果预测结果相当准确,则又说明这个变量是没必要加入建模的。一般情况下,介于两者之间。

3. 最精确的做法,把变量映射到高维空间。比如性别,有男、女、缺失三种情况,则映射成3个变量:是否男、是否女、是否缺失。连续型变量也可以这样处理。比如Google、百度的CTR预估模型,预处理时会把所有变量都这样处理,达到几亿维。这样做的好处是完整保留了原始数据的全部信息、不用考虑缺失值、不用考虑线性不可分之类的问题。缺点是计算量大大提升。
而且只有在样本量非常大的时候效果才好,否则会因为过于稀疏,效果很差。

 

 

 

 

 

 

 

 

 

 

 

 

 

正负样本不均衡处理办法:

例如正样本少 负样本多的情况

只要有两类方法

1.      样本采样

对稀疏样本上采样模拟生成和当前稀有样本临近的一些样本

对密集样本下采样:去除噪声、冗余。对负样本聚类,在每个层上按比例抽取部分样本。

2.      算法层面优化

代价敏感学习方式Cost-sensitivelearning,赋予各个类别不同的错分代价,比如对错分正类样本做更大的惩罚。

SVM,给样本数量少的正类更大的惩罚因子,表示我们重视这部分样本。

 

 

 

 

 

连续值

连续值离散化

 

 

 

 

 

 

 

计算关联新闻数目,关联新闻与公司,为新闻事件打标签,新闻倾向评分。

进行大盘指数与舆情指数相关性分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值