搜索树与哈希表详解

本文详细介绍了搜索树(二叉搜索树)和哈希表的概念、查找、插入、删除等操作,以及性能分析。对于搜索树,强调了其在Java集合类中的应用,如红黑树。而对于哈希表,探讨了哈希函数设计、冲突避免和解决方法,如闭散列(开放定址法)和开散列(链地址法)。文中指出,良好的哈希函数设计和负载因子调节有助于降低冲突率,提高哈希表的查找、插入和删除效率。
摘要由CSDN通过智能技术生成


一、搜索树

1.1 概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树

如:
在这里插入图片描述

1.2 查找

若根节点不为空:
如果根节点==查找key 返回当前节点;
如果根节点 >查找key在其左子树查找;
如果根节点<查找key在其右子树查找;否则就是没有找到,返回null;

class Node{
   
    public int val;
    public  Node left;
    public Node right;
    public Node(int val){
   
        this.val = val;
    }
}
//二叉搜索树
public class BinarySearchTree {
   
    public Node root = null;
    //查找
    public Node  search(int key){
   
        Node cur = root;
        while (cur != null){
   
            if(cur.val == key){
   
                return cur;
            }else if(cur.val < key){
   
                cur = cur.right;
            }else{
   
                cur = cur.left;
            }
        }
        return null;
    }

1.3 插入

  1. 用cur和parent来找到val需要存储的位置。
  2. parent.val 和val比较大小,确定是在左边还是在右边进行插入。
public boolean insert(int val) {
   
        if(root == null) {
   
            root = new Node(val);
            return true;
        }

        Node cur = root;
        Node parent = null;
        while (cur != null) {
   
            if(cur.val < val) {
   
                parent = cur;
                cur = cur.right;
            }else if(cur.val == val) {
   
                return false;//不能有相同的数据
            }else {
   
                parent = cur;
                cur = cur.left;
            }
        }
        Node node = new Node(val);
        if(parent.val < val) {
   
            parent.right = node;
        }else {
   
            parent.left = node;
        }
        return true;
    }

1.4 删除

设待删除结点为 cur, 待删除结点的双亲结点为 parent;

  1. cur.left == null
  • cur 是 root,则 root = cur.right
    在这里插入图片描述

  • cur 不是 root,cur 是 parent.left,则 parent.left = cur.right

在这里插入图片描述

  • cur 不是 root,cur 是 parent.right,则 parent.right = cur.right
    在这里插入图片描述

  • cur.right == null

  • cur 是 root,则 root = cur.left
    在这里插入图片描述

  • cur 不是 root,cur 是 parent.left,则 parent.left = cur.left
    在这里插入图片描述

  • cur 不是 root,cur 是 parent.right,则 parent.right = cur.left
    在这里插入图片描述

  • cur.left != null && cur.right != null
    需要使用替换法进行删除:

  • 在cur的左树当中找最大值或者在cur的右树中找最小值
    用它的值填补到被删除节点中,再来处理该结点的删除问题。

/**
 * Created With IntelliJ IDEA
 * Description:
 * Users: yyyyy
 * Date: 2022-02-19
 * Time: 16:43
 *
 */
class Node{
   
    public int val;
    public  Node left;
    public Node right;
    public Node(int val){
   
        this.val = val;
    }
}
//二叉搜索树
public class BinarySearchTree {
   
    public Node root = null;
    //查找
    public Node  search(int key){
   
        Node cur = root;
        while (cur != null){
   
            if(cur.val == key){
   
                return cur;
            }else if(cur.val < key){
   
                cur = cur.right;
            }else{
   
                cur = cur.left;
            }
        }
        return null;
    }

    //插入
    public boolean insert(int val) {
   
        if(root == null) {
   
            root = new Node(val);
            return true;
        }

        Node cur = root;
        Node parent = null;
        while (cur != null) {
   
            if(cur.val < val) {
   
                parent = cur;
                cur = cur.right;
            }else if(cur.val == val) {
   
                return false;//不能有相同的数据
            }else {
   
                parent = cur;
                cur = cur.left;
            }
        }
        Node node = new Node(val);
        if(parent.val < val) {
   
            parent.right = node;
        }
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值