1
欧拉回路 就是
定理:如果G是连通图,则G是欧拉图当且仅当G的所有顶点都是偶顶点
也就是说 先用并查集 再看偶顶点
所以,得从欧拉回路的性质出发,
1、欧拉回路必须能从1一直能连线到n的连通图,所以用并查集的话,就只能有1个集合
2、欧拉回路:
有向图:所有的顶点出度=入度。
无向图:所有顶点都是偶数度。
满足上面两个条件的话就一定是欧拉回路
转自 http://cfanz.cn/?c=article&a=read&id=122140
但是好像有更简单的方法 就是每个顶点 出现2次且仅仅出现2次(不对是偶数 不是2 笨啊)
(这是定理上的 但是怎么举例呢 比如度=4是个啥样的图) 而且本题我也没判断 连通图就过了-_-
2
初始化数组不是全零
<span style="color:#444545;"> int shuzu[1000];
for(int i=1;i<=5;i++){
cout<<"初始化数组是什么"<<shuzu[i]<<endl;
}</span><span style="color:#ff0000;">//不是全零</span>