题目1027:欧拉回路 学习

1

欧拉回路 就是

定理:如果G是连通图,则G是欧拉图当且仅当G的所有顶点都是偶顶点 

也就是说 先用并查集 再看偶顶点

所以,得从欧拉回路的性质出发

1、欧拉回路必须能从1一直能连线到n的连通图,所以用并查集的话,就只能有1个集合

2、欧拉回路:

有向图:所有的顶点出度=入度。

无向图:所有顶点都是偶数度。

满足上面两个条件的话就一定是欧拉回路

所以,利用并查集和节点度数的奇偶判断就可知是否是欧拉回路

转自 http://cfanz.cn/?c=article&a=read&id=122140


但是好像有更简单的方法  就是每个顶点 出现2次且仅仅出现2次(不对是偶数  不是2 笨啊)

(这是定理上的 但是怎么举例呢 比如度=4是个啥样的图)   而且本题我也没判断 连通图就过了-_-


2

初始化数组不是全零

<span style="color:#444545;">        int shuzu[1000];
        for(int i=1;i<=5;i++){
            cout<<"初始化数组是什么"<<shuzu[i]<<endl;
        }</span><span style="color:#ff0000;">//不是全零</span>


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值