Householder变换

本文介绍了Householder变换的概念,它是一种正交变换,常用于数值线性代数中将向量变换成具有特定性质的形式。Householder变换具有对称性、正交性和反射性等性质。文章详细阐述了如何构造Householder变换并推导了数值计算优化的算法,以减少计算误差和提高效率。此外,还讨论了在特定情况下如何避免精度损失和溢出问题,以及如何应用于矩阵变换。
摘要由CSDN通过智能技术生成

整理自:《数值线性代数(徐树方)》

Householder变换是一种能将n维向量x变换到任一n维向量y的正交变换,由于从几何上看Householder变换通过xy之间的垂直平分面将x“反射”到y,因此Householder变换又叫镜面变换;

Householder的主要应用在于它能够将x变换成任意一个等长的若干个分量为0的向量(这种向量具有某些良好的性质,尤其是在最小二乘法的正交化解法的应用),只需要对变换后的向量再进行一次Householder变换,就能变回x

本篇先介绍Householder变换的定义及其性质,再推导一种用于求Householder变换的数值化方法

 

一、Householder变换及其性质

    定义:

    Householder变换:设ω∈Rn, ||ω||2=1,定义:

                   H=I-2ωωT(H∈Rn×n)                                                                          公式1

    称H为Householder变换(矩阵)

    性质:

    1.对称性:HT=H

    2.正交性:HTH=I

    3.对合性:HH=I

    4.反射性:对任意x∈Rn,Hxx关于ω的垂直超平面(即span{ ω})的镜面反射。

                                                            

    性质1,2,3不难证,这里仅证性质4:

    设x∈Rn,则可以将x表示为x=u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值