整理自:《数值线性代数(徐树方)》
Householder变换是一种能将n维向量x变换到任一n维向量y的正交变换,由于从几何上看Householder变换通过x和y之间的垂直平分面将x“反射”到y,因此Householder变换又叫镜面变换;
Householder的主要应用在于它能够将x变换成任意一个等长的若干个分量为0的向量(这种向量具有某些良好的性质,尤其是在最小二乘法的正交化解法的应用),只需要对变换后的向量再进行一次Householder变换,就能变回x;
本篇先介绍Householder变换的定义及其性质,再推导一种用于求Householder变换的数值化方法
一、Householder变换及其性质
定义:
Householder变换:设ω∈Rn, ||ω||2=1,定义:
H=I-2ωωT(H∈Rn×n) 公式1
称H为Householder变换(矩阵)
性质:
1.对称性:HT=H
2.正交性:HTH=I
3.对合性:HH=I
4.反射性:对任意x∈Rn,Hx是x关于ω的垂直超平面(即span{ ω⊥})的镜面反射。
性质1,2,3不难证,这里仅证性质4:
设x∈Rn,则可以将x表示为x=u