定点数表示方法——原码,补码,反码,移码

本文介绍了定点数在计算机中的四种表示方法:原码、补码、反码和移码。原码直接表示数的符号,但存在0的两种编码和减法运算复杂的问题。补码通过取反加1解决这些问题,适用于加减运算,特别是将减法转换为加法。反码与原码类似,但负数求反后再加1,而移码主要用于浮点数的阶码,具有直观的大小比较特性。
摘要由CSDN通过智能技术生成

1. 真值和机器数

    真值:数的实际值,用正负号和绝对值的某进制形式来表示,如+1010,-12,-FFFF等.

    机器数:真值在计算机中的二进制表示,特点是符号数字化且数的大小受机器字长限制,其表示形式有原码,补码,反码,移码等.

2. 原码.

    1). 定点小数:

\[{x_{[{\rm{原}}]}} = \left\{ {\begin{array}{*{20}{l}}
{x,0 \le x < 1}\\
{ {2^0} - x = {2^0} + \left| x \right|, - 1 < x \le 0}
\end{array}} \right.\]

    (其中x[原]是机器数,x是真值,最高位为符号位,下同.)

    表示范围:

\[\max = 1 - {2^{ - n}},\min = - (1 - {2^{ - n}})\]

    (n是指x除符号位的位数,下同)

    如: x=+0.1011, x[原]=0.1011

    x=-0.1011, x[原]=1.1011

    2). 定点整数:

\[{x_{[原]}} = \left\{ \begin{array}{l}
x,0 \le x < {2^{\rm{n}}}\\
{2^n} - x = {2^n} + |x|, - {2^n} < x \le 0
\end{array} \right.\]

    表示范围:

\[\max  = {2^n} - 1,\min  =  - ({2^n} - 1)\]

    如:x=+10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值