
深度学习
文章平均质量分 94
0XIX0
dddlrf@hotmail.com
展开
-
Faster-RCNN 入门(也包含 Fast RCNN 的技术)
本文集合了 Faster-RCNN 的关键技术,了解 CNN 以后就可以看本文。SelectiveSearch目标检测物体的候选框是如何产生的? 如今深度学习火热的今天,RCNN/SPP-Net/Fast-RCNN等文章都会谈及bounding boxes(候选边界框)的生成与筛选策略。那么候选框是如何产生,又是如何进行筛选的呢?其实物体候选框获取当前主要使用图像分割与区域生长技术。区域生长(合并)主要由于检测图像中存在的物体具有局部区域相似性(颜色、纹理等)。目标识别与图像分割技术的发展进一原创 2020-07-11 10:42:00 · 1097 阅读 · 0 评论 -
tensorflow入门过程中遇到的坑(mnist数据集)
最近学习tensorflow,使用mnist数据集。数据的导入我都是自己写的代码,结果遇到一些问题,花了大半天才解决。1.最开始我用python自带的struct类,按unsigned int读取数据,在训练过程中,权重W很容易就变成了一堆NaN。后来才发现,输入的数据必须归一化。因为我们在随机生成W的时候,给他设置的变化范围本身就不大。如果输入数据都是[0,255],很容易越界。关于数据归一化,...原创 2018-04-02 10:54:38 · 2995 阅读 · 0 评论 -
关于卷积神经网络该如何理解的一些思考
最近思考了一下关于“卷积神经网络”该如何去理解的问题。很多文章说,越到后边的卷积层,就会有组合多个特征的能力。但是我们每个卷积层不是有很多卷积核吗,每个卷积核不是滤波器吗,前几层把特征都滤掉了。怎么得到的如下所示的图?后来我想到可以这样理解:假设一个卷积核可以过滤出横线,而且过滤效果非常好,那么图像经过它之后应该就变成一堆长短不一的横线。假设一个卷积核可以过滤出竖线,而且过滤效果非常好,那么图像经...原创 2018-03-28 19:19:15 · 562 阅读 · 1 评论 -
tensorflow手册cifar10.py(alexnet,卷积神经网络)的一些理解
以下只写一些我花了点时间才理解的东西: 1、卷积tf.nn.conv2d()函数的理解:它其中有第二个参数是[filter_height, filter_width, in_channels, out_channels]。代码中第二次卷积,输入是64,输出也是64。他的意思是本层的每个卷积核都要对之前生成的64个图同时进行卷积。之前生成的64个特征图已经对一些简单特征进行了提取,这时再...原创 2018-06-26 19:29:27 · 541 阅读 · 0 评论 -
对于ResNet残差网络的理解和思考
增加网络层数却导致更大的误差, 如下图。 这种deep plain net收敛率十分低下。原因:观察这张图可以看出,训练过程中两者的下降模式是差不多的,只不过56-layer的图像更“高”。也就是起点不好:初始化的时候,他需要生成56层随机数,结果能好吗?之所以这样能解决退化问题,我认为是,跨层连接降低了被跨层的重要性。深度可以提高准确率,却降低了泛化能力。使用更多的卷积核,降低深度,泛化会更好?...原创 2018-06-28 19:46:21 · 2271 阅读 · 0 评论 -
对cifar10.py中两个地方的理解
import tensorflow as tfw = tf.constant(1.0)b = tf.constant(4.0)def myGraph(w,b): tf.add_to_collection("loss",w) tf.add_to_collection("loss",b) w=tf.add(w,1.0) b=tf.add(b,1.0) ...原创 2018-11-29 19:42:42 · 153 阅读 · 0 评论 -
GAN与自动编码器:深度生成模型的比较
原文:https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-deep-generative-models-985cf15936ea想把马变成斑马吗?制作DIY动漫人物或名人?生成对抗网络(GAN)是您最好的新朋友。“Generative Adversarial Networks是过去10年机器学习中最有趣的想法。...翻译 2019-05-20 17:01:05 · 5803 阅读 · 0 评论 -
超宽深度网络和神经正切核 Ultra-Wide Deep Nets and Neural Tangent Kernel (NTK)
(也发布在at CMU ML.)作者:Wei Hu and Simon Du机器学习的传统观点认为,在训练误差和泛化差距之间要进行谨慎的权衡。模型的复杂性存在一个“最佳点”,因此模型(i)足够大,可以实现合理良好的训练误差,而模型(ii)足够小,可以泛化差距-测试误差和训练误差之间的差-可以控制。较小的模型会产生较大的训练误差,而使模型变大则会导致较大的泛化差距,两者都会导致较大的测试误...翻译 2019-10-05 19:27:37 · 4695 阅读 · 0 评论