NGINX下红黑树的删除(终章)附GIF

接着上一篇我们就只剩下了红黑树的删除了,这也是较为复杂的操作(原理一套gif(只是简单部分),代码两套gif(困难部分博主会从头讲到尾)),因为删除操作比较复杂,所以博主打算简单一套,复杂一套,希望大家看了博主的博客以后不要在惧怕红黑树了!!!

由于GIF大小有限制所以想要看比较清楚的可以点击下面的连接进行观看。

博主为了让大家认识更清楚所以在每套GIF都会给出代码(虽然会显得比较冗长,但是你能坚持看下来的效果一定是非常好的!)
其实删除的话我们是分为两个部分
(1)删除
(2)恢复

删除:
当你要删除一个点的时候又分为下面的情况 删除时候的情况: 1. 如果要被删除的节点没有孩子,那么就直接删除。 2. 如果删除的节点有一个孩子,删除之后,用它的孩子还代替他。 3. 如果有两个孩子,这个时候你可以选择左孩子那条路径里最大的值,或者右孩子最小的值来进行删除,然后这个孩子去替代原来节点的位置 (NGINX是选择用右孩子的最小值来进行删除)。以这个结点的键与值(key与value/data)替换待删结点的键与值,然后删除这个替身

删除操作总体来说很简单,就是要保证被删除的节点只有一个或者没有孩子就行了。

恢复
恢复主要分为几种情况(如果是红色,就直接返回,因为没有影响到红黑树的性质 删除后,被删除的节点的孩子会顶替到删除节点的位置,孩子节点我们记为temp因为恢复操作就是围绕着temp来进行的)咱们只讨论左孩子,右孩子镜像。

1.如果temp的兄弟节点w为红色。那么他们的父亲节点为黑色

处理办法:把w弄成黑色,把parent弄成红色进行一次左旋,然后将情况转换为后面一种已知的情况 然后将temp指向temp的兄弟。

2.如果temp的兄弟w为黑色,这个时候他们的父亲节点就可红可黑了,因为temp这条路径是比他兄弟那条路径少一个黑色的节点,
如果这个时候他兄弟节点w的两个孩子都是黑色的,那么咱们就直接把w节点设置为红色,这个时候两个兄弟节点的黑色数量一样,但是w parent这条路劲上的黑色节点少一个所以指向w的parent继续循环。

3.如果temp的兄弟节点w为黑色,并且他的右孩子也是黑色,左孩子为红色,那么我们就将w的左孩子设置为黑色,把设置为红色,并且以w进行一次右旋,转换为情况4.

4.如果temp的兄弟节点w为黑色,并且他的左孩子为黑色,右孩子为红色,这时候就把w的颜色设置为parent的颜色,parent设置为黑色,w的右孩子设置为黑色,然后以parent为节点进行右旋,恢复红黑树的性质。

下面我们就只给出删除的代码:

//红黑树的删除!!!!!

//据说红黑树和AVL树的区别主要体现在删除节点时,我们就来看一看。
void
ngx_rbtree_delete(ngx_rbtree_t *tree, ngx_rbtree_node_t *node)
{
    ngx_uint_t           red;
    ngx_rbtree_node_t  **root, *sentinel, *subst, *temp, *w;

    /* a binary tree delete */

    root = &tree->root;				//树根指针的指针赋给了root
    sentinel = tree->sentinel;		//哨兵指针赋给了哨兵指针


	 /* 下面是获取temp节点值,temp保存的节点是准备替换节点node ;
     * subst是保存要被替换的节点的后继节点;
     */

	 	/* case1:若node节点没有左孩子(这里包含了存在或不存在右孩子的情况)*/
	 
    if (node->left == sentinel) {	//如果左子结点是哨兵或左右子结点都是哨兵
        temp = node->right;			//获得右子结点,后面让它接替node位置
        subst = node;				//node赋给subst

    } 
	/* case2:node节点存在左孩子,但是不存在右孩子 */
	
	else if (node->right == sentinel) {	//如果右子结点是哨兵
        temp = node->left;			//获得左子结点,后面让它接替node位置
        subst = node;			//node赋给subst

		/* case3:node节点既有左孩子,又有右孩子 */
		
    } else {	//如果左右子结点都不是哨兵

			/* 获取node节点的后续节点 */
        subst = ngx_rbtree_min(node->right, sentinel);	//获得右子树中最小的结点---->头结点里面有一个内联函数来着

        if (subst->left != sentinel) {	//如果右子树的最小结点的左子结点不是哨兵,基本上会不执行这条语句
            temp = subst->left;		//获得右子树的最小结点的左子结点
        } else {				//否则获得右子树最小结点的右子结点
            temp = subst->right;		//看起来subst将被从原位置删掉然后接替node的位置
        }
    }

	//下面我们来看看temp和subst要干什么用:


			/* 若被替换的节点subst是根节点,则temp直接替换subst成为根节点 */
	
    if (subst == *root) {		//如果subst是根  --->//真正删除的节点是根节点
        *root = temp;			//temp接替根
        ngx_rbt_black(temp);	//染黑temp

        /* DEBUG stuff */
        node->left = NULL;		//清空了待删结点
        node->right = NULL;
        node->parent = NULL;
        node->key = 0;

        return;
    }


		//将我们的后继节点从书上脱离出来
	/* red记录subst节点的颜色 */
    red = ngx_rbt_is_red(subst);	//获得subst是否是红色

	/* temp节点替换subst 节点 */
    if (subst == subst->parent->left) {		//如果subst是左子结点
        subst->parent->left = temp;			//把接替结点挂到subst位置

    } else {		//如果subst是右子结点
        subst->parent->right = temp;	//把接替结点挂到subst位置
    }

	

	 /* 根据subst是否为node节点进行处理 */
    if (subst == node) {		//如果subst是待删结点--->//需要删除的节点是本身

        temp->parent = subst->parent;	//接替结点直接接替,删除完成
	
    } else {		//如果subst不是待删结点

        if (subst->parent == node) {	//如果subst的父结点就是待删结点
            temp->parent = subst;		//接替结点挂在subst上

        } else {		{//如果待删结点比subst的父结点更高
            temp->parent = subst->parent;	//把接替结点挂在subst的父结点上 -->//常规情况
        }

		/* 复制node节点属性 */
		//subst接替待删结点node的位置,复制待删结点跟周围结点的关系     --->把node的信息拷贝到subst里面去
        subst->left = node->left;
        subst->right = node->right;
        subst->parent = node->parent;
        ngx_rbt_copy_color(subst, node);

        if (node == *root) {	//如果是root节点 //如果待删结点是根
            *root = subst;		//subst接替根

        } else {		//如果待删结点不是根,subst接替它        -->维护父子信息
            if (node == node->parent->left) {
                node->parent->left = subst;
            } else {
                node->parent->right = subst;
            }
        }
			//这里就是将node完全脱离我们的红黑树了
        if (subst->left != sentinel) {		//如果subst左子结点不是哨兵
            subst->left->parent = subst;	//subst的左子结点放弃node,挂上来
        }

        if (subst->right != sentinel) {		//如果subst右子结点不是哨兵
            subst->right->parent = subst;	//subst右子结点放弃node,挂上来
        }
    }


		
	//清空待删结点node
    /* DEBUG stuff */
    node->left = NULL;
    node->right = NULL;
    node->parent = NULL;
    node->key = 0;

		//如果subst是红色,红黑树约束依然被遵守,删除工作就可以结束了
    if (red) {
        return;
    }




		/* 下面开始是调整红黑树的性质 */
	//看起来结点的删除过程已经顺利完成了,但是如果subst是黑色,我们需要修复红黑树的约束。
	//下面这一段代码的主角是接替subst位置的temp结点:

    /* a delete fixup */
		//当subst的接替结点不是根且为黑色,循环
		/* 根据temp节点进行处理 ,若temp不是根节点且为黑色 */
    while (temp != *root && ngx_rbt_is_black(temp)) {

		/* 若temp是其父亲节点的左孩子 */
        if (temp == temp->parent->left) {	//如果temp是左子结点
            w = temp->parent->right;	//获得其右兄弟		/* w为temp的兄弟节点 */

			/* case A:temp兄弟节点为红色 */
            /* 解决办法:
             * 1、改变w节点及temp父亲节点的颜色;
             * 2、对temp父亲节的做一次左旋转,此时,temp的兄弟节点是旋转之前w的某个子节点,该子节点颜色为黑色;
             * 3、此时,case A已经转换为case B、case C 或 case D;
             */

            if (ngx_rbt_is_red(w)) {	//如果temp的右兄弟是红色
                ngx_rbt_black(w);		//染黑temp的右兄弟
                ngx_rbt_red(temp->parent);	//染红temp的父结点
                ngx_rbtree_left_rotate(root, sentinel, temp->parent);	//temp的父结点左旋
                w = temp->parent->right;	//获得temp的新右兄弟
            }


			/* case B:temp的兄弟节点w是黑色,且w的两个子节点都是黑色 */
            /* 解决办法:
             * 1、改变w节点的颜色;
             * 2、把temp的父亲节点作为新的temp节点;
             */

            if (ngx_rbt_is_black(w->left) && ngx_rbt_is_black(w->right)) {	 //如果temp右兄弟的左右子结点都是黑的
                ngx_rbt_red(w);	//染红temp的右兄弟
                temp = temp->parent;	//获得temp的父结点为新temp
	
            } else {	//如果temp右兄弟的子结点不全为黑


				/* case C:temp的兄弟节点是黑色,且w的左孩子是红色,右孩子是黑色 */
                /* 解决办法:
                 * 1、将改变w及其左孩子的颜色;
                 * 2、对w节点进行一次右旋转;
                 * 3、此时,temp新的兄弟节点w有着一个红色右孩子的黑色节点,转为case D;
                 */

                if (ngx_rbt_is_black(w->right)) {	//如果其右子结点是黑色
                    ngx_rbt_black(w->left);	//染黑左子结点
                    ngx_rbt_red(w);	//染红temp的右兄弟
                    ngx_rbtree_right_rotate(root, sentinel, w);	//右兄弟右旋
                    w = temp->parent->right;	//获得temp的新右兄弟
                }


				 /* case D:temp的兄弟节点w为黑色,且w的右孩子为红色 */
                /* 解决办法:
                 * 1、将w节点设置为temp父亲节点的颜色,temp父亲节点设置为黑色;
                 * 2、w的右孩子设置为黑色;
                 * 3、对temp的父亲节点做一次左旋转;
                 * 4、最后把根节点root设置为temp节点;*/

                ngx_rbt_copy_color(w, temp->parent);	//temp右兄弟复制temp父结点颜色
                ngx_rbt_black(temp->parent);	//染黑temp父结点
                ngx_rbt_black(w->right);	//染黑temp右兄弟的右子结点
                ngx_rbtree_left_rotate(root, sentinel, temp->parent);	 //temp父结点左旋
                temp = *root;		//获得根
            }
			
			/* 这里针对的是temp节点为其父亲节点的左孩子的情况 */
        } else{//如果temp是右子结点,做对称的事 
            w = temp->parent->left;

            if (ngx_rbt_is_red(w)) {
                ngx_rbt_black(w);
                ngx_rbt_red(temp->parent);
                ngx_rbtree_right_rotate(root, sentinel, temp->parent);
                w = temp->parent->left;
            }

            if (ngx_rbt_is_black(w->left) && ngx_rbt_is_black(w->right)) {
                ngx_rbt_red(w);
                temp = temp->parent;

            } else {
                if (ngx_rbt_is_black(w->left)) {
                    ngx_rbt_black(w->right);
                    ngx_rbt_red(w);
                    ngx_rbtree_left_rotate(root, sentinel, w);
                    w = temp->parent->left;
                }

                ngx_rbt_copy_color(w, temp->parent);
                ngx_rbt_black(temp->parent);
                ngx_rbt_black(w->left);
                ngx_rbtree_right_rotate(root, sentinel, temp->parent);
                temp = *root;
            }
        }
    }

    ngx_rbt_black(temp);	//染黑当前temp
}
	如果大家感觉文字解释依然不好理解的话,博主依然给大家做了 NGINX红黑树的删除gif(分为两个部分,比较简单的,和复杂的情况)
	下面我们还是将删除分为我们之前所说的两个部分吧。

删除部分的代码(原理篇)简单部分(删除红色节点,不需要恢复)

//红黑树的删除!!!!!

//据说红黑树和AVL树的区别主要体现在删除节点时,我们就来看一看。
void
ngx_rbtree_delete(ngx_rbtree_t *tree, ngx_rbtree_node_t *node)
{
    ngx_uint_t           red;
    ngx_rbtree_node_t  **root, *sentinel, *subst, *temp, *w;

    /* a binary tree delete */

    root = &tree->root;				//树根指针的指针赋给了root
    sentinel = tree->sentinel;		//哨兵指针赋给了哨兵指针


	 /* 下面是获取temp节点值,temp保存的节点是准备替换节点node ;
     * subst是保存要被替换的节点的后继节点;
     */

	 	/* case1:若node节点没有左孩子(这里包含了存在或不存在右孩子的情况)*/
	 
    if (node->left == sentinel) {	//如果左子结点是哨兵或左右子结点都是哨兵
        temp = node->right;			//获得右子结点,后面让它接替node位置
        subst = node;				//node赋给subst

    } 
	/* case2:node节点存在左孩子,但是不存在右孩子 */
	
	else if (node->right == sentinel) {	//如果右子结点是哨兵
        temp = node->left;			//获得左子结点,后面让它接替node位置
        subst = node;			//node赋给subst

		/* case3:node节点既有左孩子,又有右孩子 */
		
    } else {	//如果左右子结点都不是哨兵

			/* 获取node节点的后续节点 */
        subst = ngx_rbtree_min(node->right, sentinel);	//获得右子树中最小的结点---->头结点里面有一个内联函数来着

        if (subst->left != sentinel) {	//如果右子树的最小结点的左子结点不是哨兵,基本上会不执行这条语句
            temp = subst->left;		//获得右子树的最小结点的左子结点
        } else {				//否则获得右子树最小结点的右子结点
            temp = subst->right;		//看起来subst将被从原位置删掉然后接替node的位置
        }
    }

	//下面我们来看看temp和subst要干什么用:


			/* 若被替换的节点subst是根节点,则temp直接替换subst成为根节点 */
	
    if (subst == *root) {		//如果subst是根  --->//真正删除的节点是根节点
        *root = temp;			//temp接替根
        ngx_rbt_black(temp);	//染黑temp

        /* DEBUG stuff */
        node->left = NULL;		//清空了待删结点
        node->right = NULL;
        node->parent = NULL;
        node->key = 0;

        return;
    }


		//将我们的后继节点从书上脱离出来
	/* red记录subst节点的颜色 */
    red = ngx_rbt_is_red(subst);	//获得subst是否是红色

	/* temp节点替换subst 节点 */
    if (subst == subst->parent->left) {		//如果subst是左子结点
        subst->parent->left = temp;			//把接替结点挂到subst位置

    } else {		//如果subst是右子结点
        subst->parent->right = temp;	//把接替结点挂到subst位置
    }

	

	 /* 根据subst是否为node节点进行处理 */
    if (subst == node) {		//如果subst是待删结点--->//需要删除的节点是本身

        temp->parent = subst->parent;	//接替结点直接接替,删除完成
	
    } else {		//如果subst不是待删结点

        if (subst->parent == node) {	//如果subst的父结点就是待删结点
            temp->parent = subst;		//接替结点挂在subst上

        } else {		{//如果待删结点比subst的父结点更高
            temp->parent = subst->parent;	//把接替结点挂在subst的父结点上 -->//常规情况
        }

		/* 复制node节点属性 */
		//subst接替待删结点node的位置,复制待删结点跟周围结点的关系     --->把node的信息拷贝到subst里面去
        subst->left = node->left;
        subst->right = node->right;
        subst->parent = node->parent;
        ngx_rbt_copy_color(subst, node);

        if (node == *root) {	//如果是root节点 //如果待删结点是根
            *root = subst;		//subst接替根

        } else {		//如果待删结点不是根,subst接替它        -->维护父子信息
            if (node == node->parent->left) {
                node->parent->left = subst;
            } else {
                node->parent->right = subst;
            }
        }
			//这里就是将node完全脱离我们的红黑树了
        if (subst->left != sentinel) {		//如果subst左子结点不是哨兵
            subst->left->parent = subst;	//subst的左子结点放弃node,挂上来
        }

        if (subst->right != sentinel) {		//如果subst右子结点不是哨兵
            subst->right->parent = subst;	//subst右子结点放弃node,挂上来
        }
    }


		
	//清空待删结点node
    /* DEBUG stuff */
    node->left = NULL;
    node->right = NULL;
    node->parent = NULL;
    node->key = 0;

		//如果subst是红色,红黑树约束依然被遵守,删除工作就可以结束了
    if (red) {
        return;
    }

GIF

图片
在这里插入图片描述

删除部分的代码(代码篇)简单部分(删除红色节点,不需要恢复)

//红黑树的删除!!!!!

//据说红黑树和AVL树的区别主要体现在删除节点时,我们就来看一看。
void
ngx_rbtree_delete(ngx_rbtree_t *tree, ngx_rbtree_node_t *node)
{
    ngx_uint_t           red;
    ngx_rbtree_node_t  **root, *sentinel, *subst, *temp, *w;

    /* a binary tree delete */

    root = &tree->root;				//树根指针的指针赋给了root
    sentinel = tree->sentinel;		//哨兵指针赋给了哨兵指针


	 /* 下面是获取temp节点值,temp保存的节点是准备替换节点node ;
     * subst是保存要被替换的节点的后继节点;
     */

	 	/* case1:若node节点没有左孩子(这里包含了存在或不存在右孩子的情况)*/
	 
    if (node->left == sentinel) {	//如果左子结点是哨兵或左右子结点都是哨兵
        temp = node->right;			//获得右子结点,后面让它接替node位置
        subst = node;				//node赋给subst

    } 
	/* case2:node节点存在左孩子,但是不存在右孩子 */
	
	else if (node->right == sentinel) {	//如果右子结点是哨兵
        temp = node->left;			//获得左子结点,后面让它接替node位置
        subst = node;			//node赋给subst

		/* case3:node节点既有左孩子,又有右孩子 */
		
    } else {	//如果左右子结点都不是哨兵

			/* 获取node节点的后续节点 */
        subst = ngx_rbtree_min(node->right, sentinel);	//获得右子树中最小的结点---->头结点里面有一个内联函数来着

        if (subst->left != sentinel) {	//如果右子树的最小结点的左子结点不是哨兵,基本上会不执行这条语句
            temp = subst->left;		//获得右子树的最小结点的左子结点
        } else {				//否则获得右子树最小结点的右子结点
            temp = subst->right;		//看起来subst将被从原位置删掉然后接替node的位置
        }
    }

	//下面我们来看看temp和subst要干什么用:


			/* 若被替换的节点subst是根节点,则temp直接替换subst成为根节点 */
	
    if (subst == *root) {		//如果subst是根  --->//真正删除的节点是根节点
        *root = temp;			//temp接替根
        ngx_rbt_black(temp);	//染黑temp

        /* DEBUG stuff */
        node->left = NULL;		//清空了待删结点
        node->right = NULL;
        node->parent = NULL;
        node->key = 0;

        return;
    }


		//将我们的后继节点从书上脱离出来
	/* red记录subst节点的颜色 */
    red = ngx_rbt_is_red(subst);	//获得subst是否是红色

	/* temp节点替换subst 节点 */
    if (subst == subst->parent->left) {		//如果subst是左子结点
        subst->parent->left = temp;			//把接替结点挂到subst位置

    } else {		//如果subst是右子结点
        subst->parent->right = temp;	//把接替结点挂到subst位置
    }

	

	 /* 根据subst是否为node节点进行处理 */
    if (subst == node) {		//如果subst是待删结点--->//需要删除的节点是本身

        temp->parent = subst->parent;	//接替结点直接接替,删除完成
	
    } else {		//如果subst不是待删结点

        if (subst->parent == node) {	//如果subst的父结点就是待删结点
            temp->parent = subst;		//接替结点挂在subst上

        } else {		{//如果待删结点比subst的父结点更高
            temp->parent = subst->parent;	//把接替结点挂在subst的父结点上 -->//常规情况
        }

		/* 复制node节点属性 */
		//subst接替待删结点node的位置,复制待删结点跟周围结点的关系     --->把node的信息拷贝到subst里面去
        subst->left = node->left;
        subst->right = node->right;
        subst->parent = node->parent;
        ngx_rbt_copy_color(subst, node);

        if (node == *root) {	//如果是root节点 //如果待删结点是根
            *root = subst;		//subst接替根

        } else {		//如果待删结点不是根,subst接替它        -->维护父子信息
            if (node == node->parent->left) {
                node->parent->left = subst;
            } else {
                node->parent->right = subst;
            }
        }
			//这里就是将node完全脱离我们的红黑树了
        if (subst->left != sentinel) {		//如果subst左子结点不是哨兵
            subst->left->parent = subst;	//subst的左子结点放弃node,挂上来
        }

        if (subst->right != sentinel) {		//如果subst右子结点不是哨兵
            subst->right->parent = subst;	//subst右子结点放弃node,挂上来
        }
    }


		
	//清空待删结点node
    /* DEBUG stuff */
    node->left = NULL;
    node->right = NULL;
    node->parent = NULL;
    node->key = 0;

		//如果subst是红色,红黑树约束依然被遵守,删除工作就可以结束了
    if (red) {
        return;
    }

GIF:(实在是不行,所以只有传小图了!!!)

在这里插入图片描述

图片:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


        虽然博主上面说的是 简单的,但是也是给大家选的有两个分支进行删除,这也是为了我们后面复杂部分而准备的,复杂部分的删除和我们之前的是一样的(复杂的删除掌握了,简单的应该是没问题的),所以我们在复杂片就给出大家恢复的策略!!!



恢复(按照小曼四步执行,即可恢复红黑树)

恢复主要分为几种情况(如果是红色,就直接返回,因为没有影响到红黑树的性质 删除后,被删除的节点的孩子会顶替到删除节点的位置(其实就是我们要后继节点(右子树的最小值)),孩子节点我们记为temp因为恢复操作就是围绕着temp来进行的)咱们只讨论左孩子,右孩子镜像。

下面是要被删除节点的结点是黑色的情况:

1.如果temp的兄弟节点w为红色。那么他们的父亲节点为黑色

处理办法:把w弄成黑色,把parent弄成红色进行一次左旋,然后将情况转换为后面一种已知的情况 然后将temp指向temp的兄弟。

2.如果temp的兄弟w为黑色,这个时候他们的父亲节点就可红可黑了,因为temp这条路径是比他兄弟那条路径少一个黑色的节点,
如果这个时候他兄弟节点w的两个孩子都是黑色的,那么咱们就直接把w节点设置为红色,这个时候两个兄弟节点的黑色数量一样,但是w parent这条路劲上的黑色节点少一个所以指向w的parent继续循环。

3.如果temp的兄弟节点w为黑色,并且他的右孩子也是黑色,左孩子为红色,那么我们就将w的左孩子设置为黑色,把设置为红色,并且以w进行一次右旋,转换为情况4.

4.如果temp的兄弟节点w为黑色,并且他的左孩子为黑色,右孩子为红色,这时候就把w的颜色设置为parent的颜色,parent设置为黑色,w的右孩子设置为黑色,然后以parent为节点进行右旋,恢复红黑树的性质。

那我们就按照复杂的情况来恢复吧。

恢复的代码(代码篇)(复杂部分完整版,包含左右旋)

void
ngx_rbtree_delete(ngx_rbtree_t *tree, ngx_rbtree_node_t *node)
{
    ngx_uint_t           red;
    ngx_rbtree_node_t  **root, *sentinel, *subst, *temp, *w;

    /* a binary tree delete */

    root = &tree->root;				//树根指针的指针赋给了root
    sentinel = tree->sentinel;		//哨兵指针赋给了哨兵指针


	 /* 下面是获取temp节点值,temp保存的节点是准备替换节点node ;
     * subst是保存要被替换的节点的后继节点;
     */

	 	/* case1:若node节点没有左孩子(这里包含了存在或不存在右孩子的情况)*/
	 
    if (node->left == sentinel) {	//如果左子结点是哨兵或左右子结点都是哨兵
        temp = node->right;			//获得右子结点,后面让它接替node位置
        subst = node;				//node赋给subst

    } 
	/* case2:node节点存在左孩子,但是不存在右孩子 */
	
	else if (node->right == sentinel) {	//如果右子结点是哨兵
        temp = node->left;			//获得左子结点,后面让它接替node位置
        subst = node;			//node赋给subst

		/* case3:node节点既有左孩子,又有右孩子 */
		
    } else {	//如果左右子结点都不是哨兵

			/* 获取node节点的后续节点 */
        subst = ngx_rbtree_min(node->right, sentinel);	//获得右子树中最小的结点---->头结点里面有一个内联函数来着

        if (subst->left != sentinel) {	//如果右子树的最小结点的左子结点不是哨兵,基本上会不执行这条语句
            temp = subst->left;		//获得右子树的最小结点的左子结点
        } else {				//否则获得右子树最小结点的右子结点
            temp = subst->right;		//看起来subst将被从原位置删掉然后接替node的位置
        }
    }

	//下面我们来看看temp和subst要干什么用:


			/* 若被替换的节点subst是根节点,则temp直接替换subst成为根节点 */
	
    if (subst == *root) {		//如果subst是根  --->//真正删除的节点是根节点
        *root = temp;			//temp接替根
        ngx_rbt_black(temp);	//染黑temp

        /* DEBUG stuff */
        node->left = NULL;		//清空了待删结点
        node->right = NULL;
        node->parent = NULL;
        node->key = 0;

        return;
    }


		//将我们的后继节点从书上脱离出来
	/* red记录subst节点的颜色 */
    red = ngx_rbt_is_red(subst);	//获得subst是否是红色  

	/* temp节点替换subst 节点 */
    if (subst == subst->parent->left) {		//如果subst是左子结点
        subst->parent->left = temp;			//把接替结点挂到subst位置

    } else {		//如果subst是右子结点
        subst->parent->right = temp;	//把接替结点挂到subst位置
    }

	

	 /* 根据subst是否为node节点进行处理 */
    if (subst == node) {		//如果subst是待删结点--->//需要删除的节点是本身

        temp->parent = subst->parent;	//接替结点直接接替,删除完成
	
    } else {		//如果subst不是待删结点

        if (subst->parent == node) {	//如果subst的父结点就是待删结点
            temp->parent = subst;		//接替结点挂在subst上

        } else {		{//如果待删结点比subst的父结点更高
            temp->parent = subst->parent;	//把接替结点挂在subst的父结点上 -->//常规情况
        }

		/* 复制node节点属性 */
		//subst接替待删结点node的位置,复制待删结点跟周围结点的关系     --->把node的信息拷贝到subst里面去
        subst->left = node->left;
        subst->right = node->right;
        subst->parent = node->parent;
        ngx_rbt_copy_color(subst, node);

        if (node == *root) {	//如果是root节点 //如果待删结点是根
            *root = subst;		//subst接替根

        } else {		//如果待删结点不是根,subst接替它        -->维护父子信息
            if (node == node->parent->left) {
                node->parent->left = subst;
            } else {
                node->parent->right = subst;
            }
        }
			//这里就是将node完全脱离我们的红黑树了
        if (subst->left != sentinel) {		//如果subst左子结点不是哨兵
            subst->left->parent = subst;	//subst的左子结点放弃node,挂上来
        }

        if (subst->right != sentinel) {		//如果subst右子结点不是哨兵
            subst->right->parent = subst;	//subst右子结点放弃node,挂上来
        }
    }


		
	//清空待删结点node
    /* DEBUG stuff */
    node->left = NULL;
    node->right = NULL;
    node->parent = NULL;
    node->key = 0;

		//如果subst是红色,红黑树约束依然被遵守,删除工作就可以结束了
    if (red) {
        return;  //满足所以跳出!!!
    }


		/* 下面开始是调整红黑树的性质 */
	//看起来结点的删除过程已经顺利完成了,但是如果subst是黑色,我们需要修复红黑树的约束。
	//下面这一段代码的主角是接替subst位置的temp结点:

    /* a delete fixup */
		//当subst的接替结点(temp)不是根且为黑色,循环
		/* 根据temp节点进行处理 ,若temp不是根节点且为黑色 */
    while (temp != *root && ngx_rbt_is_black(temp)) {

		/* 若temp是其父亲节点的左孩子 */
        if (temp == temp->parent->left) {	//如果temp是左子结点
            w = temp->parent->right;	//获得其右兄弟		/* w为temp的兄弟节点 */

			/* case A:temp兄弟节点为红色 */
            /* 解决办法:
             * 1、改变w节点及temp父亲节点的颜色;
             * 2、对temp父亲节的做一次左旋转,此时,temp的兄弟节点是旋转之前w的某个子节点,该子节点颜色为黑色;
             * 3、此时,case A已经转换为case B、case C 或 case D;
             */

            if (ngx_rbt_is_red(w)) {	//如果temp的右兄弟是红色
                ngx_rbt_black(w);		//染黑temp的右兄弟
                ngx_rbt_red(temp->parent);	//染红temp的父结点
                ngx_rbtree_left_rotate(root, sentinel, temp->parent);	//temp的父结点左旋
                w = temp->parent->right;	//获得temp的新右兄弟
            }


			/* case B:temp的兄弟节点w是黑色,且w的两个子节点都是黑色 */
            /* 解决办法:
             * 1、改变w节点的颜色;
             * 2、把temp的父亲节点作为新的temp节点;
             */

            if (ngx_rbt_is_black(w->left) && ngx_rbt_is_black(w->right)) {	 //如果temp右兄弟的左右子结点都是黑的
                ngx_rbt_red(w);	//染红temp的右兄弟?
                temp = temp->parent;	//获得temp的父结点为新temp
	
            } else {	//如果temp右兄弟的子结点不全为黑


				/* case C:temp的兄弟节点是黑色,且w的左孩子是红色,右孩子是黑色 */
                /* 解决办法:
                 * 1、将改变w及其左孩子的颜色;
                 * 2、对w节点进行一次右旋转;
                 * 3、此时,temp新的兄弟节点w有着一个红色右孩子的黑色节点,转为case D;
                 */

                if (ngx_rbt_is_black(w->right)) {	//如果其右子结点是黑色
                    ngx_rbt_black(w->left);	//染黑左子结点
                    ngx_rbt_red(w);	//染红temp的右兄弟
                    ngx_rbtree_right_rotate(root, sentinel, w);	//右兄弟右旋
                    w = temp->parent->right;	//获得temp的新右兄弟
                }


				 /* case D:temp的兄弟节点w为黑色,且w的右孩子为红色 */
                /* 解决办法:
                 * 1、将w节点设置为temp父亲节点的颜色,temp父亲节点设置为黑色;
                 * 2、w的右孩子设置为黑色;
                 * 3、对temp的父亲节点做一次左旋转;
                 * 4、最后把根节点root设置为temp节点;*/

                ngx_rbt_copy_color(w, temp->parent);	//temp右兄弟复制temp父结点颜色
                ngx_rbt_black(temp->parent);	//染黑temp父结点
                ngx_rbt_black(w->right);	//染黑temp右兄弟的右子结点
                ngx_rbtree_left_rotate(root, sentinel, temp->parent);	 //temp父结点左旋
                temp = *root;		//获得根
            }
			
			/* 这里针对的是temp节点为其父亲节点的左孩子的情况 */
        } 
			else{//如果temp是右子结点,做对称的事 
            w = temp->parent->left;

            if (ngx_rbt_is_red(w)) {
                ngx_rbt_black(w);
                ngx_rbt_red(temp->parent);
                ngx_rbtree_right_rotate(root, sentinel, temp->parent);
                w = temp->parent->left;
            }

            if (ngx_rbt_is_black(w->left) && ngx_rbt_is_black(w->right)) {
                ngx_rbt_red(w);
                temp = temp->parent;

            } else {
                if (ngx_rbt_is_black(w->left)) {
                    ngx_rbt_black(w->right);
                    ngx_rbt_red(w);
                    ngx_rbtree_left_rotate(root, sentinel, w);
                    w = temp->parent->left;
                }

                ngx_rbt_copy_color(w, temp->parent);
                ngx_rbt_black(temp->parent);
                ngx_rbt_black(w->left);
                ngx_rbtree_right_rotate(root, sentinel, temp->parent);
                temp = *root;
            }
        }
    }

    ngx_rbt_black(temp);	//染黑当前temp
}










//左旋 就是以一个节点p和他的右孩子y为支轴进行,让y成为新的根,p成为y的左孩子,y的左孩子变成p的右孩子。
//右旋类似。


static ngx_inline void
ngx_rbtree_left_rotate(ngx_rbtree_node_t **root, ngx_rbtree_node_t *sentinel,
    ngx_rbtree_node_t *node)	//红黑树的左旋
{
    ngx_rbtree_node_t  *temp;	//定义一个临时变量

    temp = node->right;			//获取当前右节点	此时temp就是当前节点的右节点了
    node->right = temp->left;	///node的右节点设置为他原来右节点的左节点
	
    if (temp->left != sentinel) {	//如果右子结点的左结点不为哨兵
        temp->left->parent = node;	//右子结点的左子结点挂在左旋结点上
    }

    temp->parent = node->parent;	//右节点将会变成原来node的父节点。

    if (node == *root) {			//是不是根节点的判断
        *root = temp;

    } else if (node == node->parent->left) {	//然后把右节点的信息和原来node的parent进行维护
        node->parent->left = temp;

    } else {
        node->parent->right = temp;
    }

    temp->left = node;		//现在node变回他原来右节点的子节点了
    node->parent = temp;	//所以他的parent变成temp
}


static ngx_inline void
ngx_rbtree_right_rotate(ngx_rbtree_node_t **root, ngx_rbtree_node_t *sentinel,
    ngx_rbtree_node_t *node)	//红黑树的右旋
{
    ngx_rbtree_node_t  *temp;
	
    temp = node->left;
    node->left = temp->right;	//左子结点指向原左子结点的右结点

    if (temp->right != sentinel) {	//如果左子结点的右结点不为哨兵
        temp->right->parent = node;	//左子结点的右子结点挂在右旋结点上
    }

    temp->parent = node->parent;	//左子结点挂在右旋结点的父结点上

    if (node == *root) {	//如果右旋结点为根节点
        *root = temp;		//根节点赋为左子结点

    } else if (node == node->parent->right) {	//如果右旋结点为右子结点
        node->parent->right = temp;				//左子结点挂父结点右边

    } else {		//否则左子结点挂父结点左边
        node->parent->left = temp;
    }

    temp->right = node;		//现在node变回他原来左节点的子节点了
    node->parent = temp;	//所以他的parent变成temp
}



gif(太大了,上传不了博主只能上传最次的,要看较好的请点击我的百度网盘进行观看

图片:

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

博主举得例子也是比较复杂的了,希望大家好好理解,那么相信再去看懂NGINX红黑树部分的源码应该不会在感到无从下手了。

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值