在 Faster R-CNN 上训练自己的数据集
一、数据集处理流程
代码:jwyang/faster-rcnn.pytorch,具体流程可以【参考】使用faster-rcnn.pytorch训练自己数据集(完整版),这里讲一下遇到的问题
1、txt->xml
DOTA 数据集的 label 是存在txt
里的,需要将txt
转为xml
格式(/FPN_Tensorflow_Rotation/data/io/DOTA/data_crop.py 已经将 DOTA 数据集转为 VOC 格式,images 和 labels 放在生成的/DOTA1.0/train-800
中。因此只需要将train-800
放入 Faster R-CNN 代码指定的 data 位置,然后将 images 重命名为 JPEGImage,labels 重命名为 Annotations)
2、根据需要选择目标(可选)
因为 DOTA 中的某些目标太小,因此先选大目标进行训练。采用以下方法:
# 选择目标体积大的图片
import os
import shutil
import xml.etree.ElementTree as ET
def voc_selcet(ann_filepath, img_filepath, img_savepath, ann_savepath):
large_img_num = 0
if not os.path.exists(img_savepath):
os.mkdir(img_savepath)
if not os.path.exists(ann_savepath):
os.mkdir(ann_savepath)
for file in os.listdir(ann_filepath):
filee = os.path.join(ann_filepath, file)
tree = ET.parse(filee)
root = tree.getroot()
objs = root.findall('object')
for ix, obj in enumerate(objs):
bbox = obj.find('bndbox')
# 采用 bbox.find('ymax') 还是 bbox.find('x0'),取决与 xml 文件中是怎么定义的
# 这里要与 faster-rcnn.pytorch/lib/datasets/pascal_voc.py 中236行左右保持一致!!!
# y_max = float(bbox.find('ymax').text) - 1
# y_min = float(bbox.find('ymin').text) - 1
# x_max = float(bbox.find('xmax').text) - 1
# x_min = float(bbox.find('xmin').text) - 1
# -----------------------
x1 = float(bbox.find('x0').text)
y1 = float(bbox.find('y0').text)
x2 = float(bbox.find('x1').text