在 Faster R-CNN 上训练自己的数据集

一、数据集处理流程

代码:jwyang/faster-rcnn.pytorch,具体流程可以【参考】使用faster-rcnn.pytorch训练自己数据集(完整版),这里讲一下遇到的问题

1、txt->xml

DOTA 数据集的 label 是存在txt里的,需要将txt转为xml格式(/FPN_Tensorflow_Rotation/data/io/DOTA/data_crop.py 已经将 DOTA 数据集转为 VOC 格式,images 和 labels 放在生成的/DOTA1.0/train-800中。因此只需要将train-800放入 Faster R-CNN 代码指定的 data 位置,然后将 images 重命名为 JPEGImage,labels 重命名为 Annotations)

2、根据需要选择目标(可选)

因为 DOTA 中的某些目标太小,因此先选大目标进行训练。采用以下方法:

# 选择目标体积大的图片
import os
import shutil
import xml.etree.ElementTree as ET

def voc_selcet(ann_filepath, img_filepath, img_savepath, ann_savepath):
    large_img_num = 0
    if not os.path.exists(img_savepath):
        os.mkdir(img_savepath)
    if not os.path.exists(ann_savepath):
        os.mkdir(ann_savepath)

    for file in os.listdir(ann_filepath):
        filee = os.path.join(ann_filepath, file)
        tree = ET.parse(filee)
        root = tree.getroot()
        objs = root.findall('object')

        for ix, obj in enumerate(objs):
            bbox = obj.find('bndbox')
            # 采用 bbox.find('ymax') 还是 bbox.find('x0'),取决与 xml 文件中是怎么定义的
            # 这里要与 faster-rcnn.pytorch/lib/datasets/pascal_voc.py 中236行左右保持一致!!!
            
            # y_max = float(bbox.find('ymax').text) - 1
            # y_min = float(bbox.find('ymin').text) - 1
            # x_max = float(bbox.find('xmax').text) - 1
            # x_min = float(bbox.find('xmin').text) - 1
            # -----------------------
            x1 = float(bbox.find('x0').text)
            y1 = float(bbox.find('y0').text)
            x2 = float(bbox.find('x1').text
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值