第3.1章 卷积神经网络(CNN)——Conv、Pool、FC、Activation Function、BN各个层的作用及原理

【详见】卷积网络中三种类型的层

一、Convolution(CONV)

作用: 通过卷积层中卷积核运算,提取卷积核希望提取的特征

二、Pooling(POOL)

作用: Andrew Ng 对池化层的作用是这样解释的:“ConvNets often also use pooling layers to reduce the size of the representation, to speed the computation, as well as make some of the features that detects a bit more robust”。即减小图像大小、加速计算、使其检测出的特征更加健壮

三、Fully Connected(FC)

作用: 分类

四、Activation Function

【详见】第1.2章 神经网络中隐藏层、偏置单元、激活函数的作用(使用激活函数的原因)
作用: 为了得到更复杂的函数关系

五、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值