第3.1章 卷积神经网络CNN-不同层的作用
【详见】卷积网络中三种类型的层
一、Convolution(CONV)
作用: 通过卷积层中卷积核运算,提取卷积核希望提取的特征。
二、Pooling(POOL)
作用: Andrew Ng 对池化层的作用是这样解释的:“ConvNets often also use pooling layers to reduce the size of the representation, to speed the computation, as well as make some of the features that detects a bit more robust”。即减小图像大小、加速计算、使其检测出的特征更加健壮。
三、Fully Connected(FC)
作用: 分类
四、Activation Function
【详见】第1.2章 神经网络中隐藏层、偏置单元、激活函数的作用(使用激活函数的原因)
作用: 为了得到更复杂的函数关系