COMP6741: Algorithms for Intractable Problems

Assignment 2
COMP6741: Algorithms for Intractable Problems
Name: insert your name here
Student number: insert your student number here
1 Instructions
This assignment is an individual assignment. For the solutions to this assignment, you may rely on all theorems,
lemmas, and results from the lecture notes. If any other works (articles, Wikipedia entries, lecture notes from other
courses, etc.) inspired your solutions, please cite them and give a list of references at the end.
If you have questions about this assignment, please post them to the forum.
Late penalty. All deadlines are Sydney time. Submitting x hours after the deadline, with x > 0, reduces the
obtained mark by 5 · ⌈x/24⌉ marks. No submissions will be accepted 5 days (120 hours) or more after the deadline.
How to submit. Submit a PDF with your solutions to the exercises in Moodle. The first page of the PDF must
contain your name and student number.
2 Background
The goal of this assignment is to improve on the best known kernel for Nonblocker.
Definition 1. Let G = (V,E) be a graph. A subset of vertices S ⊆ V is a dominating set of G if each vertex
v ∈ V \ S has a neighbor in S. A subset of vertices S ⊆ V is a nonblocker of G if V \ S is a dominating set of G.
Example:
a
b c
d e
f
This graph has a nonblocker of size 4 (highlighted) and {c, d} form a dominating
set of size 2.
If we think of the graph as the state space of a system, and we are in a state
that belongs to the nonblocker S = {a, b, e, f}, then we can escape from S by
transitioning via one edge to a state that is not in S.
Let us now define the Nonblocker problem.
Nonblocker
Input: A graph G = (V,E) and an integer k ≥ 0
Question: Does G have a nonblocker of size at least k?
The current smallest kernel for Nonblocker relies heavily on an upper bound on the domination number of
graphs of minimum degree at least 2.
Definition 2. The domination number of a graph G is the size of a smallest dominating set of G.
Theorem 3 ([1, 4]). Every connected graph on n ≥ 8 vertices with minimum degree at least 2 has domination
number at most 2n/5.
There is a set of 7 graphs with at most 7 vertices that have domination number greater than 2n/5. The following
simplification rule for Nonblocker deals with connected components with at most 7 vertices.
1
Simplification rule 1 (small component). If G has a connected component C with at most 7 vertices, then compute
the size of a largest nonblocker of C, remove C from G and decrease k by the size of a largest nonblocker of C.
Observe that the size of a largest nonblocker of C can be computed in O(1) time, since C has O(1) size.
Sometimes our simplification rules for Nonblocker may be able to determine that for some vertex v there is a
largest nonblocker that does not contain v. It would be nice to be able to annotate vertices with this information.
However, our kernelization algorithm needs to return an instance for Nonblocker, which contains a graph (with
no annotations) and an integer. Since such annotations would be lost, Dehne et al. [2] introduce a variant of the
problem whith one special vertex that is not allowed to be in the nonblocker. If we had more than one vertex that
is not allowed to belong to the nonblocker, we could just merge them into one vertex.
Nonblocker with Catalytic Vertex (NBcat)
Input: A graph G = (V,E), a vertex c ∈ V , and an integer k ≥ 0
Question: Does G have a nonblocker S ⊆ V \ {c} of size at least k?
We refer to the vertex c as the catalytic vertex.
Dehne et al. [2] reduce Nonblocker to NBcat by simply adding the catalytic vertex c as an isolated vertex
(Catalyzation rule). The instance for NBcat is then preprocessed, making sure to handle all vertices in V \{c} with
degree at most 1, and the instance is finally reduced back to an instance for Nonblocker by a De-catalyzation
rule. The De-catalyzation rule adds a path on three vertices, makes these three vertices adjacent to c and increases
k by 3. The resulting graph has minimum degree at least 2 and the vertices added by the De-catalyzation rule
makes sure that c belongs to a largest nonblocker without any need for an annotation. After exhaustively applying
Simplification rule 1, Theorem 3 guarantees that the graph has a dominating set of size at most 2n/5, and therefore
a nonblocker of size at least 3n/5. Therefore, if k ≤ 3n/5, or, equivalently, if n ≥ 5k/3, then the instance is a
Yes-instance, and otherwise the algorithm by Dehne et al. [2] outputs the current instance with less than 5k/3
vertices.
The simplification rules from [2] include the following (they are slightly rephrased):
Simplification rule 2 (isolated vertex). If G contains a vertex v ∈ V \ {c} of degree 0, then remove v from G.
Simplification rule 3 (degree 1). If G contains a vertex v ∈ V \{c} of degree 1 with neighbor u, then set k := k−1,
remove v from G, and merge the vertex u into c. In the special case where u = c, the merge operation is void.
Simplification rule 4 (good cut vertex). If G contains a vertex v ∈ V whose neighborhood contains a non-empty
subset U ⊆ N(v) such that N(U) = {v} and c /∈ U , then set k := k − |U |, remove U from G, and merge v into c.
Simplification rule 5 (neighboring non-catalytic degree 2). If G contains neighboring degree-2 vertices u, v ∈
V \ {c} that do not share a common neighbor, then set k := k− 2, merge the two vertices in N({u, v}), and remove
u and v from G. If c was in N({u, v}), then the merged vertex is the new catalytic vertex.
Simplification rule 6 (neighboring catalytic degree 2). If G contains a degree-2 vertex v whose neighborhood
N(v) = {c, v′} contains c, then remove the edge vv′ from G.
This results is a 5k/3+O(1) vertex kernel for Nonblocker, i.e., a kernelization algorithm returning an equiv-
alent instance where the graph has at most 5k/3 + O(1) vertices. Here, k refers to the parameter in the original
instance. This value of k may increase by up to 3 due to the de-catalyzation rule, leading to an additional constant
of at most 5 · 3/3 = 5 in the number of vertices in the kernel beyond 5k/3.
Our improvement to the kernel size will rely on a better bound on the domination number in graphs with
minimum degree at least 2 where there are additional restrictions on degree-2 vertices.
Definition 4. A bad cut vertex in a graph G = (V,E) is a vertex x ∈ V such that G − x contains a connected
component C that is a cycle on four vertices and x is adjacent to at least one and at most three vertices from C.
Definition 5. A special cycle C in a graph G = (V,E) is a subgraph of G that is a cycle on five vertices such that
among every two consecutive vertices on C there is at least one vertex that has degree 2 in G.
Theorem 6 ([3]). If G = (V,E) is a connected graph on n ≥ 14 vertices with minimum degree at least 2 that
contains no bad cut vertex and no special cycle, then G has domination number at most 3n8 .
2
3 Exercises
Exercise 1. [30 points]
Assume that (G, c, k) is an instance for NBcat such that G has a bad cut vertex x and G − x contains a
connected component C that is a cycle on four vertices and x is adjacent to i vertices from C with 1 ≤ i ≤ 3.
We assume that previously stated simplification rules do not apply (in particular Simplification rule 5 and 6),
so i ≥ 2.
We will have three simplification rules to handle the bad cut vertex x depending on whether the catalytic vertex
belongs to C or {x}, namely for the cases where c = x, c ∈ V (C), and c /∈ {x} ∪ V (C).
Show that the following simplification rule is sound.
Simplification rule 7 (cycle-catalytic bad cut). If c ∈ V (C), then
if c has degree 2 and i = 2, then merge c with one of its neighbors; the merged vertex is the new catalytic
vertex;
otherwise, if there is a vertex y ∈ V (C) \ (N [c] ∪N(x)), then merge y into c;
otherwise, merge x into c.
Exercise 2. [30 points]
Based on the statements of the previous exercise, design simplification rules for the cases where x = c and where
c /∈ {x} ∪ V (C).
Note. If you are asked to design a rule or an algorithm, it is not necessary to prove its correctness or running
time. However, in case the rule or algorithm is not correct, it is sometimes difficult to give partial marks if you did
not exhibit additional (partially) correct reasoning that led you to the design of the rule or algorithm or that is
close to a correctness argument.
Exercise 3. [10 points]
Handle special cycles via simplification rules for NBcat.
Exercise 4. [10 points]
Argue that Nonblocker has a 8k/5+O(1) vertex kernel based on the work by Dehne et al. [2] and WX:codehelp 

  • 15
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
1. 智慧社区背景与挑战 随着城市化的快速发展,社区面临健康、安全、邻里关系和服务质量等多方面的挑战。华为技术有限公司提出智慧社区解决方案,旨在通过先进的数字化技术应对这些问题,提升城市社区的生活质量。 2. 技术推动智慧社区发展 技术进步,特别是数字化、无线化、移动化和物联化,为城市社区的智慧化提供了可能。这些技术的应用不仅提高了社区的运行效率,也增强了居民的便利性和安全性。 3. 智慧社区的核心价值 智慧社区承载了智慧城市的核心价值,通过全面信息化处理,实现对城市各个方面的数字网络化管理、服务与决策功能,从而提升社会服务效率,整合社会服务资源。 4. 多层次、全方位的智慧社区服务 智慧社区通过构建和谐、温情、平安和健康四大社区模块,满足社区居民的多层次需求。这些服务模块包括社区医疗、安全监控、情感沟通和健康监测等。 5. 智慧社区技术框架 智慧社区技术框架强调统一平台的建设,设立数据中心,构建基础网络,并通过分层建设,实现平台能力及应用的可持续成长和扩展。 6. 感知统一平台与服务方案 感知统一平台是智慧社区的关键组成部分,通过统一的RFID身份识别和信息管理,实现社区服务的智能化和便捷化。同时,提供社区内外监控、紧急救助服务和便民服务等。 7. 健康社区的构建 健康社区模块专注于为居民提供健康管理服务,通过整合医疗资源和居民接入,实现远程医疗、慢性病管理和紧急救助等功能,推动医疗模式从治疗向预防转变。 8. 平安社区的安全保障 平安社区通过闭路电视监控、防盗报警和紧急求助等技术,保障社区居民的人身和财产安全,实现社区环境的实时监控和智能分析。 9. 温情社区的情感沟通 温情社区着重于建立社区居民间的情感联系,通过组织社区活动、一键呼叫服务和互帮互助平台,增强邻里间的交流和互助。 10. 和谐社区的资源整合 和谐社区作为社会资源的整合协调者,通过统一接入和身份识别,实现社区信息和服务的便捷获取,提升居民生活质量,促进社区和谐。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值