寸先生的AI道路

可上九天揽月,可下五洋捉鳖,谈笑凯歌还

多种方法使用GloVe

本文的写作参考可网上很多博客,再次感谢,参考到的博文列在下面,本文对Glove原理,纯Python实现,Pytorch实现,官方C语言方式编译,以及简单方式使用进行记录,方便后面学习的童鞋。 论文地址:GloVe: Global Vectors for Word Representation 论文...

2019-06-23 21:05:30

阅读数 66

评论数 0

Anaconda中构建深度学习开发环境记录(Win10下测试)

有人问我Win10下深度学习环境的构建,个人觉得应该和Win7差不多,但出于负责还是亲自尝试记录一下。下面所说的命令都是亲测可用的。 我的平台是:Python3.6(Anaconda4.3)+CUDA10.0+windows10,提前去NVIDIA官网下载CUDA和cuDNN,配置见我的另一篇博...

2019-06-22 16:32:29

阅读数 18

评论数 0

【避免入坑】混合硬盘上安装Win10+Ubuntu18.04双系统需要注意的细节

因为系统崩溃且之前使用Win7分区不合理,所以直接重装,这里改用Win10,我的电脑配置是512G SSD+4T机械+32GB内存+Nvdia2080ti显卡,本文只是将安装中需要注意的细节说明,不重复所有细节,具体完整的安装网上已经有很多教程。 ## 一.安装Win10 使用U盘安装,比较简...

2019-06-22 09:55:45

阅读数 50

评论数 0

【论文阅读笔记】A Sensitivity Analysis of (and Practitioner Guide to) Convolutional Neural Networks for Sent

本文对TextCNN(原论文:Convolutional Neural Networks for Sentence Classification)做了大量调参实验,给出了很多使用TextCNN进行文本分类的具体建议。TextCNN的论文解析在网上有很多已有的博客可以参考,这里只是简述。 Text...

2019-06-21 10:41:43

阅读数 30

评论数 0

【论文代码调测】A Convolutional Neural Network for Modelling Sentences

本论文使用Dynamic K-max pooling和宽卷积提升句子建模精度,在NLP中,当卷积核的长度相对于输入向量的长度比较大,需要使用宽卷积,在TensorFlow的CNN实现中,padding='SAME'表示宽卷积,padding='VALID'实现的是窄卷积,关于宽窄卷积的说明可以参考...

2019-06-01 21:39:24

阅读数 15

评论数 0

[学习笔记]Pytorch迁移学习实例

本文参考Pytorch官方教程,个人觉得代码结构写得非常好,很值得借鉴使用,所以转发分享,另外将调试中遇到的问题和解决一起说明一下。 目前在CNN上的迁移学习的主要场景主要有两大类: 1.CNN微调:使用预训练的CNN参数初始化网络,而不是随机初始化网络,如使用在imagenet上进行预训练的...

2019-05-19 09:04:23

阅读数 25

评论数 0

【论文阅读笔记】RETAIN: An Interpretable Predictive Model for ealthcare using Reverse Time Attention Mechani

本文发布在NIPS2016,论文代码:https://github.com/mp2893/retain. 本文核心模型如图: 文章将事件序列建模为心力衰竭诊断的预测因子的方法表明,复杂模型可以提供更高的预测精度和更精确的解释能力。考虑到RNNs对序列数据分析的能力,文章提出了RETAIN,...

2019-05-05 16:09:58

阅读数 37

评论数 1

清华源失效后如何安装pytorch1.01

今天本想体验下最新版的pytorch1.01,结果发现conda install时候HTTP error了,查了一下原来从4月25日其国内的清华源、中科大源等陆续关停服务,无奈又只能恢复到Anaconda官网的原始源,我的心情拔凉拔凉的,只能这样啦,安装过程中如何提速记录分享一下。我的GPU是Nv...

2019-04-28 22:05:56

阅读数 754

评论数 0

【论文阅读笔记】Learning Hierarchical Representations of Electronic Health Records for Clinical Outcome

本文发布在arxiv 2019 基于电子病历(EHR)的临床结局预测对提高医疗质量起着至关重要的作用。传统的深度序列模型无法捕捉到长而不规则的临床事件序列中编码的丰富的时间模式。长时间尺度的临床事件表现出较强的时间模式,而短时间内的事件往往是无序的共现。因此,本文提出了不同时间尺度的临床...

2019-04-25 17:13:29

阅读数 73

评论数 0

【论文阅读笔记】Linguistic Knowledge and Transferability of Contextual Representations

本文发布在arxiv 2019 preprint 通过十六种不同的探究任务来研究语境化知识和语境化词语表示的可迁移性。预训练的上下文相关词向量足以在广泛的NLP任务中实现高性能。对于需要特定信息但未被上下文单词表示捕获的任务,学习特定任务的上下文特征有助于在词向量中编码必要的知识。此外,...

2019-04-21 08:55:05

阅读数 66

评论数 0

【论文阅读笔记】The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data

本文发布在arxiv 2019 电子表型分析的任务是通过分析其医疗记录来确定个人是否具有感兴趣的医学病症,并且是临床信息学的基础。电子表型越来越多地通过监督学习来完成。本文使用电子健康记录(EHR)数据研究多任务学习对表型分析的有效性。多任务学习旨在通过共同学习其他辅助任务来提高目标任务...

2019-04-20 15:51:00

阅读数 37

评论数 0

【论文阅读笔记】An Unsupervised Learning Model for Deformable Medical Image Registration

图像配准是图像处理研究领域中的一个典型问题和技术难点,其目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另...

2019-03-24 10:11:49

阅读数 196

评论数 0

Python中的浅复制与深复制

Python中的标识、 相等性和别名 1.is,id和== >>> charles = {'name': 'Charles L. Dodgson', 'born': 1832} >>> lewis = charle...

2019-03-22 15:44:35

阅读数 23

评论数 0

Python装饰器简介

1.装饰器实现的基本问题 基本的Python装饰器 @function_wrapper def function(): pass 以上代码等价于: def function(): pass function = function_wrapper(function) 使用类来...

2019-03-22 14:39:15

阅读数 13

评论数 0

卷积神经网络的模型训练技巧

本文cifar10图片分类的例简要说明卷积神经网络中的模型训练技巧,这里我们暂且不提训练的结果的准确度。代码都很简单,不做过多解读。 1.基本的模型 这里使用的就是普通的卷积加池化,最后通过global average pooling输出10个向量经softmax分类: import tensor...

2019-03-20 21:55:29

阅读数 160

评论数 0

【论文阅读笔记】HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs

论文地址:https://arxiv.org/abs/1903.04120 本文是CVPR2019上发表的一篇文章,文章主要设计了新的滤波器结构,在大幅减少FLOPS的前提下还能保证延迟和准确性。 文章将现有的卷积过滤器大致分为三类:1)深度方面的卷积过滤器,用于执行逐深度的卷积(...

2019-03-19 15:15:41

阅读数 784

评论数 1

【论文阅读笔记】Supervised Learning of Universal Sentence Representations from Natural Language Inference Da

本文是Facebook AI team发表在EMNLP2018,个人觉得比较有意思。文章主要目的是验证NLP领域做迁移学习的可行性,在多种NLP任务上进行sentence level的embedding,实验得出在NLI任务上进行预训练的表达在迁移学习的效果上是最好的,作者认为这是由于NLI任务使...

2019-03-16 09:35:59

阅读数 31

评论数 0

使用NetworkX绘制深度神经网络结构图

本文转载自微信公众号Python中文社区,作者:jclian,展示如何利用Python中的NetworkX模块来绘制深度神经网络(DNN)结构图。 已知我们创建的DNN结构图如下: DNN结构示意图 该DNN模型由输入层、隐藏层、输出层和softmax函数组成,每一层的神经元个数分别为4...

2019-02-28 11:26:37

阅读数 59

评论数 0

【论文阅读笔记】RADnet: Radiologist level accuracy using deep learning for hemorrhage detection in CT scans

本文发布在IEEE Symposium on Biomedical Imaging (ISBI) 2018,通过深度学习检测CT中的脑出血。根据作者描述,本文旨在模拟医生检测三维CT的方式构建网络结构,即:在遍历二维切片的同时重点关注潜在的出血区域。本文的网络结构如图: 文章亮点如下: 1...

2019-02-28 10:49:12

阅读数 51

评论数 0

PlotNeuralNet-一款绘制神经网络的好工具

        今天发现github上一款绘制神经网络的好工具,项目名称:PlotNeuralNet,clone下来试了一下,效果很好,目前主要支持的是卷积神经网络,卷积层、池化层、bottleneck、skip-connection、up-conv、Softmax等常规的层在代码中都有定义,还缺...

2019-02-24 17:28:02

阅读数 2337

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭