人工智能的恶意使用:预测,预防和规避

今天看到了一片不错的paper,和大家分享一下。主要讲AI大规模应用在健康,运输,文化,科技等领域带来积极改变的同时,也会越来越多的带来信息安全、政策安全方面的风险。因为当今电脑系统在根本上是不安全的,在一个本不安全的系统上开发至关重要的机器学习系统将会自然而然导致AI的不安全性。文章对AI安全风险进行了预测,并探讨了预防和规避风险的策略。下面是文章摘要。

In the coming decades, artificial intelligence (AI) and machine learning technologies are going to transform many aspects of our world. Much of this change will be positive; the potential for benefits in areas as diverse as health, transportation and urban planning, art, science, and cross-cultural understanding are enormous. We’ve already seen things go horribly wrong with simple machine learning systems; but increasingly sophisticated AI will usher in a world that is strange and different from the one we’re used to, and there are serious risks if this technology is used for the wrong ends.

Today EFF is co-releasing a report with a number of academic and civil society organizations1 on the risks from malicious uses of AI and the steps that should be taken to mitigate them in advance.

At EFF, one area of particular concern has been the potential interactions between computer insecurity and AI. At present, computers are inherently insecure, and this makes them a poor platform for deploying important, high-stakes machine learning systems. It’s also the case that AI might have implications for computer [in]security that we need to think about carefully in advance. The report looks closely at these questions, as well as the implications of AI for physical and political security. You can read the full document here.

原文地址
https://www.eff.org/files/2018/02/20/malicious_ai_report_final.pdf

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MKET趋势图展示了蒸散发在不同区域的空间时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图png图的形式呈现,支持各种应用,包括政策规划、水资源管理土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值