有一头母牛,它每年年初生一头小母牛。每头小母牛从第四个年头开始,每年年初也生一头小母牛。请编程实现在第n年的时候,共有多少头母牛?

输入

输入数据由多个测试实例组成,每个测试实例占一行,包括一个整数n(0<n<55),n的含义如题目中描述。
n=0表示输入数据的结束,不做处理。

输出

对于每个测试实例,输出在第n年的时候母牛的数量。
每个输出占一行。

样例输入复制

2
4
5
0

样例输出复制

2
4
6

代码如下:

两种思路,递归和动态规划

1,递归

递归先考虑递归结束条件--》为当 n==1 的时候 只有一头牛,,return 1

其他情况下:第n年 的牛的数量为:n-1年的数量和 今年新出生的牛的数量

,今年新出生的牛的数量 --就是在今年有生育能力的牛的数量--就是n-3年 时牛的数量

所以又要讨论 n---当 n<=3的时候 有生育能力的牛只有一头,

伪代码:

if (n == 1)
    {
        return 1;
    }
     if (n <= 3)
    {
        return number(n - 1) + 1;
    }
    else
    {
        return number(n - 1) + number(n - 3);
    }

这个代码没问题但是  容易超时

我们继续考虑

第一年 1头

第二年 2头

第三年 3头

前三年来说都没有新的牛出生,且牛的头数和年份数相等

改进:

 if (n <= 3)
    {
        return n;
    }
    else
    {
        return number(n - 1) + number(n - 3);
    }

代码如下:


#include<stdio.h>
int number(int n)
{
	/*if (n == 1)
	{
		return 1;
	}*/
	 if (n <= 3)
	{
		//return number(n - 1) + 1;
		return n;
	}
	else
	{
		return number(n - 1) + number(n - 3);
	}
}
int main()
{

	int arr[1000]={0};
	int n = 0;
	int i = 0;
	scanf("%d", &n);
	while (n != 0)
	{
		arr[i] = n;
		i++;
		scanf("%d", &n);
	}
	for (i = 0; arr[i] != '\0'; i++) {
		printf("%d\n", number(arr[i]));
	}
	return 0;
}

 

第二种方法:动态规划---就是找规律

一样--这种比较抽象的题不要去 找 N年对应的牛的个数,,,这样会比较困难,,我们引入一个数组,,存放每年的牛的个数,横向找规律,,本质思路和递归同,

代码如下:

#include<stdio.h>
int main()
{

	int arr[1000]={0};
	int n = 0;
	int i = 1;
	scanf("%d", &n);
	int max = n;
	while (n != 0)
	{
		arr[i] = n;
		i++;
		if (n >= max)
		{
			max = n;
		}
		scanf("%d", &n);
	}

	int number[1000] = { 0 };//对应年份牛的个数
	for (i = 1; i <= max; i++)
	{
		if (i <= 3)
		{
			number[i] = i;
		}
		else
		{
			number[i] = number[i - 1] + number[i - 3];
		}
	}

	for (i = 1; arr[i] != '\0'; i++)
	{
		printf("%d\n", number[arr[i]]);
	}
	return 0;

}

来看看两个代码的速度(上面的是用 动态规划求解

 

显然 -----动态规划  ----还是 要快呀

快去用动态规划试试 斐波那契数列吧~!@#¥%……&*( 

这是个经典的递归或动态规划问题,可以用C语言轻松解决。以下是详细说明和代码示例。 ### 分析 1. **初始状态**:第1只有1母牛。 2. **繁殖规则**: - 母牛每年年初都会一头母牛。 - 小母牛需要到第4开始才具备育能力。 3. **目标**:求第n母牛总数。 我们可以用个数组保存每母牛数量,并利用之前的状态计算当前状态的数量。 --- ### 程序实现 (C语言) ```c #include <stdio.h> int main() { int n; printf("输入份: "); scanf("%d", &n); if (n <= 0) { printf("非法输入!\n"); return -1; } // 定义数组存放每年的奶牛数 int cows[n + 1]; // 初始值 cows[1] = 1; // 第1只有1母牛 cows[2] = 2; // 第2又出一头母牛 cows[3] = 3; // 第3再出一头母牛 // 动态规划填充后续份的奶牛数量 for (int i = 4; i <= n; i++) { cows[i] = cows[i - 1] + cows[i - 3]; // 当第i-3的小母牛开始繁殖 } printf("第%d共有 %d 母牛。\n", n, cows[n]); return 0; } ``` --- ### 示例运行 #### 输入: ``` 输入份: 5 ``` #### 输出: ``` 第5共有 6 母牛。 ``` --- ### 解释逻辑 1. **基础数据**: - 第1: 只有最初的一头母牛 (`cows[1] = 1`)。 - 第2: 新一头母牛 (`cows[2] = 2`)。 - 第3: 再新一头母牛 (`cows[3] = 3`)。 2. **从第4起**: 根据规则,每头在第`i-3`的小母牛从这开始也会贡献一头新的小母牛。因此公式为: ``` cows[i] = cows[i - 1] + cows[i - 3] ``` 例如: - 第4时,新增加的是第三母牛的孩子 -> `cows[4] = 4`. - 第5时,新增加的是第二母牛的孩子 -> `cows[5] = 6`. --- ### 时间复杂度与空间复杂度分析 - **时间复杂度:** O(n),因为只需遍历次数组即可完成所有计算。 - **空间复杂度:** O(n),由于需要用数组存储中间结果。 如果希望进步减少空间占用量,还可以仅保留最近几的数据进行滚动更新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值