【MySQL】聚合函数

文章介绍了MySQL中的五大常用聚合函数,如SUM、AVG、MAX、MIN和COUNT的用法及注意事项,包括它们在不同类型字段上的应用和效率差异。同时,详细讲解了GROUPBY用于数据分组和WITHROLLUP的使用,以及HAVING子句在筛选分组后数据的作用,与WHERE子句的区别和配合使用的方法。
摘要由CSDN通过智能技术生成

一、五大常用聚合函数

  • SUM():求总和,只适用于数值类型字段,如果是字符串类型不会报错会返回0,会自动过滤空值
  • AVG():求平均值,只适用于数值类型字段,字符串类型不会报错会返回0,会自动过滤空值
  • MAX():求最大值,适用于数值类型、字符串类型和日期时间类型字段
  • MIN():求最小值,适用于数值类型、字符串类型和日期时间类型字段
  • COUNT():用于计算查询结果集中的数据共有多少条
    • COUNT(*)
    • COUNT(常数):例如COUNT(0),COUNT(1)
    • COUNT(指定字段):此方式只能用于那种不存在NULL的字段,如果存在空值,统计总数时不计入
    • 如果是MyISAM引擎,这三种方式的效率相同,因为此引擎内部有一个计数器在维护着行数。如果是InnoDB引擎,那么第一和第二种效率高于第三种,后面会细说

注意:MySQL中聚合函数是不能嵌套使用的

我们创建一个表t_decade_book来进行验证

DROP TABLE IF EXISTS `t_decade_book`;
CREATE TABLE `t_decade_book`  (
  `book_id` int(10) NOT NULL AUTO_INCREMENT COMMENT '书id',
  `book_name` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '书名',
  `book_count` int(10) DEFAULT NULL COMMENT '数量',
  `detail` varchar(200) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '描述',
  PRIMARY KEY (`book_id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 4 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

INSERT INTO `t_decade_book` VALUES (1, 'Java从入门到秃头', 20, 'Java学习');
INSERT INTO `t_decade_book` VALUES (2, '数据库从删库到跑路', 20, '数据库学习');
INSERT INTO `t_decade_book` VALUES (3, '测试从入职到干架', 20, '测试脚本学习');
INSERT INTO `t_decade_book` VALUES (4, '划水越划越爽', NULL, '划水技巧学习');

得到的表数据如下
在这里插入图片描述

SELECT AVG(book_count),SUM(book_count),AVG(book_count)*4 FROM t_decade_book;

SELECT MAX(book_count),MIN(book_count),MAX(book_name),MIN(book_name) FROM t_decade_book;

SELECT COUNT(book_id),COUNT(1),COUNT(*),COUNT(book_count) FROM t_decade_book;

SELECT AVG(book_count),SUM(book_count),SUM(book_count)/4,SUM(book_count)/COUNT(book_count) FROM t_decade_book;

执行结果如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、GROUP BY

首先我们向之前创建的t_decade_blog表中插入一条数据

INSERT INTO t_decade_blog(id,name,author,create_time,views)VALUES('d3258b79-d543-49bb-9850-16cac7566666','JVM系列','十年',NOW(),8000);

表格中结果如下
在这里插入图片描述

然后我们测试一下GROUP BY操作

# 根据单列进行分组
SELECT author,AVG(views) FROM t_decade_blog GROUP BY author;

# 根据多列进行分组,如果分组的条件相同,顺序不同不会影响最终结果
# 我们可以理解为根据这些条件进行组合,只有符合这些条件的才会分到一个组里
SELECT id,author,AVG(views) FROM t_decade_blog GROUP BY id,author;
SELECT author,id,AVG(views) FROM t_decade_blog GROUP BY author,id;

# 当使用GROUP BY关键字时,SELECT中涉及到的非聚合函数包含的字段,必须出现在GROUP BY后面
# 但是GROUP BY关键字后面的字段不一定要出现在SELECT之后
# 另外,在不使用GROUP BY时,聚合函数不能和普通字段放在一起进行查询
SELECT author,id,AVG(views) FROM t_decade_blog GROUP BY author;

# with rollup作用在聚合函数。如果聚合函数是COUNT(*)则会在统计的记录中再次求COUNT(*)
# 如果是AVG(),则会去除分组条件,求该字段的AVG()
# 使用WITH ROLLUP后不能再使用ORDER BY
SELECT author,AVG(views) FROM t_decade_blog GROUP BY author WITH ROLLUP;

SELECT book_id,AVG(book_count) FROM t_decade_book GROUP BY book_id WITH ROLLUP;

SELECT author,COUNT(views) FROM t_decade_blog GROUP BY author WITH ROLLUP;

执行结果如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意GROUP BY的使用顺序

  • 放在FROMWHERE后面
  • 放在ORDER BYLIMIT前面

三、HAVING

1、HAVING 子句可以让我们筛选分组后的各组数据

  • 当我们想使用聚合函数作为数据的过滤条件时,就不能搭配WHERE使用了,必须使用HAVING来进行替换。比如我们想筛选出哪些部门的最高工资大于10000,那么就要先根据部门id进行分组,然后再使用HAVINGMAX(salary)进行过滤
  • 如果过滤条件中没有聚合函数,那就强烈建议使用WHERE
  • HAVING必须声明在GROUP BY后面
  • 在日常开发中,使用HAVING的前提是我们使用了GROUP BY

2、HAVINGWHERE的对比

  • 从适用范围来说,HAVING更广
  • 如果过滤条件中没有聚合函数,那么WHERE的执行效率要高于HAVING。因为WHERE的执行顺序是排在HAVING前面的,它会筛选掉不满足条件的数据,这样后面GROUP BY分组以及HAVING要处理的数据量就更小了
# 错误演示
SELECT id,MAX(views)
FROM t_decade_blog
WHERE MAX(views) > 4000
GROUP BY id;

SELECT id,MAX(views)
FROM t_decade_blog
GROUP BY id
HAVING MAX(views) > 4000;

# 如果我们想查出特定博客id中最大浏览量大于4000的书籍
# 方式一:WHERE搭配HAVING,推荐此方式,执行效率更高
SELECT id,MAX(views)
FROM t_decade_blog
WHERE id IN ('76782763-48d0-4cef-b8e1-1054e181e41d',
'd3258b79-d543-49bb-9850-16cac7565f57',
'd3258b79-d543-49bb-9850-16cac7566666')
GROUP BY id
HAVING MAX(views) > 4000;

# 方式二
SELECT id,MAX(views)
FROM t_decade_blog
GROUP BY id
HAVING MAX(views) > 4000 
AND id IN ('76782763-48d0-4cef-b8e1-1054e181e41d',
'd3258b79-d543-49bb-9850-16cac7565f57',
'd3258b79-d543-49bb-9850-16cac7566666');

四、SQL底层执行原理

1、SELECT语句的完整结构

SQL92语法结构

SELECT 字段1,字段2,...(可能存在聚合函数)
FROM1,2,...
WHERE 多表的连接条件 AND 不包含聚合函数的过滤条件
GROUP BY 分组字段1,分组字段2...
HAVING 包含聚合函数的过滤条件
ORDER BY 排序字段1,排序字段2...(ASC / DESC)
LIMIT 偏移量,条目数

SQL99语法结构

SELECT 字段1,字段2,...(可能存在聚合函数)
FROM1 (LEFT / RIGHT) JOIN2 ON 多表的连接条件
(LEFT / RIGHT) JOIN2 ON 多表的连接条件2...
WHERE 不包含聚合函数的过滤条件
GROUP BY 分组字段1,分组字段2...
HAVING 包含聚合函数的过滤条件
ORDER BY 排序字段1,排序字段2...(ASC / DESC)
LIMIT 偏移量,条目数

2、SQL语句的执行过程

我们就以SQL99语法结构为例进行分析

  • 首先执行FROMHAVING范围内的语句
    • 先根据FROM找出所需要的表,这里相当于之前说过的CROSS JOIN—>然后根据ON后面的连接条件去除无法被关联的数据—>判断是否是左/右外连接(LEFT / RIGHT JOIN)—>根据WHERE过滤数据—>根据GROUP BY分组(这一步之后,针对每组的聚合函数进行过滤才有了意义,这就能说得通为什么WHERE中不能使用聚合函数)—>根据HAVING进行分组
  • 然后执行SELECT:执行完第一步会查出所有字段,这一步筛选出我们需要哪些字段,如果有DISTINCT关键字,那么还会进行去重
  • 最后执行ORDER BYLIMIT:对上一步得到的结果集进行排序,然后再进行分页

如有错误,欢迎指正!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值