深度学习--概率图模型(一)

本文介绍了概率图模型(PGM)的概念,强调其在处理变量间独立性假设问题中的作用。PGM通过图结构可视化概率模型,简化复杂分布中变量的关系和计算。文章提到了PGM的体系框架,并对比了生成模型与判别模型,指出生成模型关注联合概率分布,而判别模型直接学习决策函数。最后,作者预告下篇博客将深入探讨PGM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这份资料看了好几遍了,终于有点知识框架了,总结一下,方便以后查看。

一、概率图模型(PGM)引入:

   在实际应用中,变量之间往往存在很多的独立性假设或近似独立,随机变量与随机变量之间存在极少数的关联。PGM根据变量之间的独立性假设,为我们提供了解决这类问题的机制,PGM是以概率论以及图论为基础,通过图的结构将概率模型可视化,让我们能够了解到复杂分布中的变量之间的关系,也把概率上的复杂计算过程理解为在图上进行信息传递的过程,所以不必要过多的在意复杂的表达式计算。


二、PGM体系框架

    

三、生成模型与判别模型

      今天先记录生成模型与判别模型,下次博客正式进入PGM。



1、

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值