人脸表情识别SVM

该代码示例使用Dlib和OpenCV进行人脸识别,从图像中提取128维特征并保存到CSV文件。接着,它加载模型对新图像进行微笑检测,分别应用逻辑回归(LR)、线性支持向量机(LSVC)、多层感知机(MLPC)和随机梯度下降分类器(SGDC)进行预测。此外,还展示了如何从摄像头实时检测人脸并进行微笑识别。
摘要由CSDN通过智能技术生成

dilb人脸特征提取

# 从人脸图像文件中提取人脸特征存入 CSV
# Features extraction from images and save into features_all.csv

# return_128d_features()          获取某张图像的128D特征
# compute_the_mean()              计算128D特征均值

from cv2 import cv2 as cv2
import os
import dlib
from skimage import io
import csv
import numpy as np

# 要读取人脸图像文件的路径
path_images_from_camera = "C:/Users/DEDSEC/Smile/files2/test/"

# Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()

# Dlib 人脸预测器
predictor = dlib.shape_predictor("D:/shape_predictor_68_face_landmarks.dat")

# Dlib 人脸识别模型
# Face recognition model, the object maps human faces into 128D vectors
face_rec = dlib.face_recognition_model_v1("D:/dlib_face_recognition_resnet_model_v1.dat")


# 返回单张图像的 128D 特征
def return_128d_features(path_img):
    img_rd = io.imread(path_img)
    img_gray = cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB)
    faces = detector(img_gray, 1)

    print("%-40s %-20s" % ("检测到人脸的图像 / image with faces detected:", path_img), '\n')

    # 因为有可能截下来的人脸再去检测,检测不出来人脸了
    # 所以要确保是 检测到人脸的人脸图像 拿去算特征
    if len(faces) != 0:
        shape = predictor(img_gray, faces[0])
        face_descriptor = face_rec.compute_face_descriptor(img_gray, shape)
    else:
        face_descriptor = 0
        print("no face")

    return face_descriptor


# 将文件夹中照片特征提取出来, 写入 CSV
def return_features_mean_personX(path_faces_personX):
    features_list_personX = []
    photos_list = os.listdir(path_faces_personX)
    if photos_list:
        for i in range(len(photos_list)):
            # 调用return_128d_features()得到128d特征
            print("%-40s %-20s" % ("正在读的人脸图像 / image to read:", path_faces_personX + "/" + photos_list[i]))
            features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
            #  print(features_128d)
            # 遇到没有检测出人脸的图片跳过
            if features_128d == 0:
                i += 1
            else:
                features_list_personX.append(features_128d)
                i1=str(i+1)
                add="D:/myworkspace/JupyterNotebook/Smile/feature/face_feature"+i1+".csv"
                print(add)
                with open(add, "w", newline="") as csvfile:
                    writer1 = csv.writer(csvfile)
                    writer1.writerow(features_128d)
    else:
        print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')

    # 计算 128D 特征的均值
    # N x 128D -> 1 x 128D
    if features_list_personX:
        features_mean_personX = np.array(features_list_personX).mean(axis=0)
    else:
        features_mean_personX = '0'

    return features_mean_personX


# 读取某人所有的人脸图像的数据
people = os.listdir(path_images_from_camera)
people.sort()

with open("D:/myworkspace/JupyterNotebook/Smile/feature/features2_all.csv", "w", newline="") as csvfile:
    writer = csv.writer(csvfile)
    for person in people:
        print("##### " + person + " #####")
        # Get the mean/average features of face/personX, it will be a list with a length of 128D
        features_mean_personX = return_features_mean_personX(path_images_from_camera + person)
        writer.writerow(features_mean_personX)
        print("特征均值 / The mean of features:", list(features_mean_personX))
        print('\n')
    print("所有录入人脸数据存入 / Save all the features of faces registered into: D:/myworkspace/JupyterNotebook/Smile/feature/features2_all.csv")

模型训练

# use the saved model
import joblib

from smile_dlib_tezhengdian import get_features
import smile_test1

import cv2

# path of test img
path_test_img = "C:/Users/test_nosmile.jpg"

# 提取单张40维度特征
positions_lip_test = get_features(path_test_img)

# path of models
path_models = "C/Smile/data/data_models/"

print("The result of"+path_test_img+":")
print('\n')

# #########  LR  ###########
LR = joblib.load(path_models+"model_LR.m")
ss_LR = smile_test1.model_LR()
X_test_LR = ss_LR.transform([positions_lip_test])
y_predict_LR = str(LR.predict(X_test_LR)[0]).replace('0', "no smile").replace('1', "with smile")
print("LR:", y_predict_LR)

# #########  LSVC  ###########
LSVC = joblib.load(path_models+"model_LSVC.m")
ss_LSVC = smile_test1.model_LSVC()
X_test_LSVC = ss_LSVC.transform([positions_lip_test])
y_predict_LSVC = str(LSVC.predict(X_test_LSVC)[0]).replace('0', "no smile").replace('1', "with smile")
print("LSVC:", y_predict_LSVC)

# #########  MLPC  ###########
MLPC = joblib.load(path_models+"model_MLPC.m")
ss_MLPC = smile_test1.model_MLPC()
X_test_MLPC = ss_MLPC.transform([positions_lip_test])
y_predict_MLPC = str(MLPC.predict(X_test_MLPC)[0]).replace('0', "no smile").replace('1', "with smile")
print("MLPC:", y_predict_MLPC)

# #########  SGDC  ###########
SGDC = joblib.load(path_models+"model_SGDC.m")
ss_SGDC = smile_test1.model_SGDC()
X_test_SGDC = ss_SGDC.transform([positions_lip_test])
y_predict_SGDC = str(SGDC.predict(X_test_SGDC)[0]).replace('0', "no smile").replace('1', "with smile")
print("SGDC:", y_predict_SGDC)

img_test = cv2.imread(path_test_img)

img_height = int(img_test.shape[0])
img_width = int(img_test.shape[1])

# show the results on the image
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img_test, "LR:    "+y_predict_LR,   (int(img_height/10), int(img_width/10)), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
cv2.putText(img_test, "LSVC:  "+y_predict_LSVC, (int(img_height/10), int(img_width/10*2)), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
cv2.putText(img_test, "MLPC:  "+y_predict_MLPC, (int(img_height/10), int(img_width/10)*3), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
cv2.putText(img_test, "SGDC:  "+y_predict_SGDC, (int(img_height/10), int(img_width/10)*4), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)

cv2.namedWindow("img", 2)
cv2.imshow("img", img_test)
cv2.waitKey(0)

相机检测照片

# use the saved model
import joblib

import smile_test1

import dlib         # 人脸处理的库 Dlib
import numpy as np  # 数据处理的库 numpy
import cv2          # 图像处理的库 OpenCv


detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('D:/shape_predictor_68_face_landmarks.dat')

# OpenCv 调用摄像头
cap = cv2.VideoCapture(0)

# 设置视频参数
cap.set(3, 480)


def get_features(img_rd):

    # 输入:  img_rd:      图像文件
    # 输出:  positions_lip_arr:  feature point 49 to feature point 68, 20 feature points / 40D in all

    # 取灰度
    img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)

    # 计算68点坐标
    positions_68_arr = []
    faces = detector(img_gray, 0)
    landmarks = np.matrix([[p.x, p.y] for p in predictor(img_rd, faces[0]).parts()])

    for idx, point in enumerate(landmarks):
        # 68点的坐标
        pos = (point[0, 0], point[0, 1])
        positions_68_arr.append(pos)

    positions_lip_arr = []
    # 将点 49-68 写入 CSV
    # 即 positions_68_arr[48]-positions_68_arr[67]
    for i in range(48, 68):
        positions_lip_arr.append(positions_68_arr[i][0])
        positions_lip_arr.append(positions_68_arr[i][1])

    return positions_lip_arr


while cap.isOpened():
    # 480 height * 640 width
    flag, img_rd = cap.read()
    kk = cv2.waitKey(1)

    img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)

    # 人脸数 faces
    faces = detector(img_gray, 0)
    # 检测到人脸
    if len(faces) != 0:
        # 提取单张40维度特征
        positions_lip_test = get_features(img_rd)

        # path of models
        path_models = "D:/myworkspace/JupyterNotebook/Smile/data/data_models/"

        # #########  LR  ###########
        LR = joblib.load(path_models+"model_LR.m")
        ss_LR = smile_test1.model_LR()
        X_test_LR = ss_LR.transform([positions_lip_test])
        y_predict_LR = str(LR.predict(X_test_LR)[0]).replace('0', "no smile").replace('1', "with smile")
        print("LR:", y_predict_LR)

        # #########  LSVC  ###########
        LSVC = joblib.load(path_models+"model_LSVC.m")
        ss_LSVC = smile_test1.model_LSVC()
        X_test_LSVC = ss_LSVC.transform([positions_lip_test])
        y_predict_LSVC = str(LSVC.predict(X_test_LSVC)[0]).replace('0', "no smile").replace('1', "with smile")
        print("LSVC:", y_predict_LSVC)

        # #########  MLPC  ###########
        MLPC = joblib.load(path_models+"model_MLPC.m")
        ss_MLPC = smile_test1.model_MLPC()
        X_test_MLPC = ss_MLPC.transform([positions_lip_test])
        y_predict_MLPC = str(MLPC.predict(X_test_MLPC)[0]).replace('0', "no smile").replace('1', "with smile")
        print("MLPC:", y_predict_MLPC)

        # #########  SGDC  ###########
        SGDC = joblib.load(path_models+"model_SGDC.m")
        ss_SGDC = smile_test1.model_SGDC()
        X_test_SGDC = ss_SGDC.transform([positions_lip_test])
        y_predict_SGDC = str(SGDC.predict(X_test_SGDC)[0]).replace('0', "no smile").replace('1', "with smile")
        print("SGDC:", y_predict_SGDC)

        print('\n')

        # 按下 'q' 键退出
        if kk == ord('q'):
            break

    # 窗口显示
    # cv2.namedWindow("camera", 0) # 如果需要摄像头窗口大小可调
    cv2.imshow("camera", img_rd)

# 释放摄像头
cap.release()

# 删除建立的窗口
cv2.destroyAllWindows()

效果:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值