小白的机器学习笔记系列 之三 - 线性模型在非线性问题上的应用

线性模型的局限性

在现实世界中我们所遇到的情况大多是非线性的, 比如在信用额度评估中的年龄,太小或太大都不好,这个最佳年龄范围大约是在30到50之间,这显然就是非线性的。
那么我们能否使用线性模型来处理这些非线性的问题?
在回答这个问题之前,让我们先探讨一下,所谓线性模型中的“线性”究竟是什么?

什么是线性

线性分类
Y = s i g n ( ∑ i = 0 d w i ∗ x i ) Y =sign( \sum_{i=0}^dw_i*x_i) Y=sign(i=0dwixi)

线性回归
Y = ∑ i = 0 d w i ∗ x i Y = \sum_{i=0}^dw_i*x_i Y=i=0dwixi

上述两个线性模型的核心计算公式中, x i x_i xi 是某一属性的数字表示,我们可对其进行线性变化。比如说,我们可以用1-5的分值,来分别表示状况不良状况极佳的5中不同房屋状况,如有必要我们也可以把这个房屋状况评分系统划分得更细,如用0到100分的评分体系。
而年龄之类的属性,天然就是数字类型的。但我们可以对它做一些非线性变化,例如求年龄和和最佳年龄的差距值,将变化后的数值再用作线性模型的输入属性。

非线性变化

请看下面的例子,图中A组(红色)数据集中于图像的中心区域,而B组(蓝色)数据则分散在四周,这显然不可以使用线性分类将其区分开来。但是我们可以将这两组数据变换成到(1,1) 点距离的平方, 即 x 1 ′ = ( x 1 ′ − 1 ) 2 , x 2 ′ = ( x 2 ′ − 1 ) 2 x_1' = (x_1'-1)^2, x_2'=(x_2'-1)^2 x1=(x11)2,x2=(x21)2。 经变换后的数据则如下方右图所示,这就线性可分了。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程小白的逆袭日记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值