R-直方图与散点图及均值和标准差

> x1<-c(10,15,68,97,26,58,42)

#求均值
> mean(x1)
[1] 45.14286

#求标准差
> sd(x1)
[1] 31.34979
> x2<-c(21,34,42,21,56,32,89)
#散点图

> plot(x1,x2)



 

 

#直方图
> hist(x1)



 

 

### 如何在散点图中显示数据点的均值 在使用Origin软件绘制带均值标识的散点图时,可以通过以下方法实现: #### 数据准备 首先需要准备好数据集,假设有一组自变量 \(X\) 对应的因变量 \(Y \),可以计算这组数据的平均值作为均值标记的位置。具体操作包括计算 \(X\) 的均值 \(Y\) 的均值。 #### 添加均值标记 为了在散点图中标记出数据点的均值位置,可以在图形上添加一个特殊的符号来代表该均值点。以下是具体的步骤说明: 1. **导入并绘图** 将数据导入到Origin的工作表中,并通过菜单栏选择 `Plot -> Scatter` 来创建基本的散点图[^1]。 2. **计算均值** 利用Origin内置的功能或者手动输入公式,在工作表中新增一列用于存储均值。对于每一列的数据(\(X\) \(Y\)),分别求取其算术平均值。例如,如果原始数据位于第A列 (\(X\)) B列 (\(Y\)) 中,则可以在C列 (Mean_X) D列 (Mean_Y) 输入以下公式: ```plaintext mean(A) mean(B) ``` 3. **插入均值点** 计算完成后,选中新生成的一对均值坐标(C,D),右键点击图表区域选择 `Add Points from Worksheet...` 或者直接拖拽至现有图像窗口内完成叠加显示[^2]。 4. **调整样式** 对新加入的单一点位进行个性化设置使其更加醒目区别于其他普通样本点。双击目标图标打开属性对话框,更改大小、颜色以及形状等参数直至满意为止。 5. **完善细节** 进一步优化整个可视化效果,如标注轴名、设定合理刻度区间、增加标题描述等等,确保最终成果清晰易懂且美观大方。 ```python import numpy as np import matplotlib.pyplot as plt # 示例数据 x = np.random.rand(50)*100 y = 2*x + np.random.normal(size=50) mean_x = np.mean(x) mean_y = np.mean(y) plt.figure(figsize=(8,6)) plt.scatter(x,y,label='Data points') plt.plot(mean_x, mean_y,'ro', markersize=10, label="Mean Point") for i in range(len(x)): plt.annotate(f'({round(x[i],2)}, {round(y[i],2)})',(x[i]+0.5,y[i])) plt.title('Scatter Plot with Mean Marker') plt.xlabel('Independent Variable X') plt.ylabel('Dependent Variable Y') plt.legend() plt.grid(True) plt.show() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值