自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

DeepLearning_的博客

专注计算机视觉 深度学习 目标识别检测跟踪研究,毕设指导,实际项目开发

  • 博客(392)
  • 资源 (569)
  • 收藏
  • 关注

原创 基于YOLOv8+PyQt5开发的行人过马路危险行为检测告警系统(附数据集和源码下载)

交通安全一直是一个备受关注的重要议题。每年都有大量的交通事故发生,其中很多都与行人在过马路时的危险行为有关。故我开发了一种基于YOLOv8的行人过马路危险行为检测告警系统。它能够快速准确地识别图像或视频中的行人,并判断他们是否存在危险行为。通过结合计算机视觉和深度学习技术,该系统能够实时监测行人在过马路时的行为,并及时发出警报,以提醒行人和驾驶员注意交通安全。提示:以下是本篇文章正文内容在本博客中,我们介绍了基于YOLOv8和PyQt5的行人过马路危险行为检测告警系统。

2023-08-13 10:00:00 2989 5

原创 使用Resnet网络对人脸图像分类识别出男女性别(包含数据集制作+训练+测试)

这两天有点忙,本打算昨天准备写这篇博客内容的,推迟到今天晚上。实际上,上午我已经把模型训练完了,准确率可以达到95%,考虑到用的台式机没有装显卡,所以使用的数据集一共只有340张。分布情况如下。【训练集】女性:150张;男性:150张【验证集】女性:20张;男性:20张数据集预览女性数据男性数据提示:以下是本篇文章正文内容,下面案例可供参考实际上很多可以修改,如loss选择、梯度下降方法、学习率、衰减率等等。

2022-11-19 23:27:31 6122 18

原创 100种目标检测数据集【voc格式yolo格式json格式coco格式】+YOLO系列算法源码及训练好的模型

本文介绍并分享了应用于各行业、各领域非常有用的目标检测数据集(感谢您的关注+三连,数据集持续更新中…),其中绝大部分数据集作者已应用于各种实际落地项目,数据集整体质量好,标注精确,数据的多样性充分,训练模型拟合较好,具有较高的研究和使用价值,各数据集都有下载链接及作者训练好的模型+源码下载链接,同时也有对应的检测效果视频,请放心下载~【实际项目应用】:阳光厨房、明厨亮灶智能监控方案【数据集说明】:老鼠检测数据集已更新到2018张,图片包含有白天和黑夜老鼠出没照片,标签包含voc(xml)和yolo格式

2022-10-12 21:32:27 17537 33

原创 【传统图像处理--学习笔记】不均匀光照下文本图像二值化处理

不均匀光照的文本图像二值化处理

2022-07-13 09:27:02 3867 9

原创 YOLOv6算法新鲜出炉--训练自己数据集过程

YOLOv6算法背景:YOLOv6 是美团视觉智能部研发的一款目标检测框架,致力于工业应用。本框架同时专注于检测的精度和推理效率,在工业界常用的尺寸模型中:YOLOv6-nano 在 COCO 上精度可达 35.0% AP,在 T4 上推理速度可达 1242 FPS;YOLOv6-s 在 COCO 上精度可达 43.1% AP,在 T4 上推理速度可达 520 FPS。评估指标如下;官方公众哈介绍说 YOLOv6算法精度与速度远超 YOLOv5 和 YOLOX 的新框架,是真是假,还待自己跑跑测评一下,

2022-06-28 23:20:03 4850 26

原创 【深度学习笔记】飞桨PP-PicoDet算法训练自己数据(过程超详细)

前言最近在研究目标检测算法–PP-PicoDet算法(百度自研**),2021年11月份新鲜出炉。官方介绍说,性能优于YOLOV5 、YOLOX等算法,主要是轻量化部署贡献很大,比如在相同的精度下,PP-PicoDet推理速度高出YOLOv5s 44%,可谓NB,所以作者第一步先搭建环境,试跑一下,记录使用PP-PicoDet算法在paddle框架下训练模型的整个过程,供大家参考交流,欢迎提问。PP-PicoDet算法源码:GitHub源码地址一、说明PP-PicoDet算法支持COCO、Pasc

2021-12-09 19:52:39 10444 33

原创 【深度学习笔记】五步教你使用Pytorch搭建神经网络并训练

文章目录前言一、准备数据&加载数据1.准备数据(分类)2.加载数据二、定义损失函数1自定义损失函数或者使用Pytorch中现有的三、定义网络四、定义优化器五、迭代训练总结前言针对刚接触深度学习的小伙伴,肯定很想自己亲手搭建一个网络模型,训练模型。今天作者就五步教大家简单快速搭建一个分类网络,并训练模型,希望对初学者有一定帮助,欢迎大家收藏关注,作者将不断分享更新深度学习中的一些重要知识点。一、准备数据&加载数据1.准备数据(分类)作者是训练分类训练工作服和非工作服,如下图所示.

2021-09-03 10:05:37 7741

原创 数据库概述--数据与数据管理

信息 : 对现实世界存在方式 或 运动状态的反映。数据 : 存储在某一媒体上, 能够被识别的物理符号;数据的概念在数据处理领域已经被大为拓宽, 不仅包括字符组成的文本形式的数据, 而且还包括其他类型的数据(如音频、 视频等)信息与数据的关系:信息与数据是的, 数据是信息的, 信息是数据的。数据处理 : 数据及信息相互转换的过程。从数据处理的角度而言, 信息是一种被加工成特定形式的数据。数据处理:数据处理的核心是技术, 其中数据管理技术是指对数据的和的技术。

2024-05-23 10:30:00 1004

原创 shell脚本程序学习概述

用来声明脚本由什么shell解释, 否则使用默认shell单个""号代表注释当前行执行:增加可执行权限后执行直接指定使用 bash 解释 xxx.sh使用当前 shell 读取解释 xxx.sh.xxx.sh # 或 source test.sh./和bash执行过程基本一致,前者首先检测, 使用指定的shell, 如果没有使用默认的shell后者明确指定bash解释器去执行脚本, 脚本中指定的解释器不起作用用./和bash去执行会在后台启动一个新的shell去执行脚本。

2024-05-23 07:45:00 658

原创 shell脚本程序学习之变量

定义变量变量名=变量值num = 10引用变量$变量名把变量num的值付给变量 ii = $num显示变量使用echo命令可以显示单个变量取值echo $num清除变量使用unset命令清除变量变量的其它用法:从键盘输入一个字符串付给变量 string定义一个只读变量, 只能在定义时初始化, 以后不能改变, 不能被清除。使用 export 说明的变量, 会被导出为环境变量, 其它 shell 均可使用: 此时必须使用下面命令 才可以生效注意事项:变量名只能包含英文字母下划线, 不能以数字开头。

2024-05-22 14:30:00 893

原创 shell脚本程序学习之 条件测试语句

判断字符串是否相等, 可能还要检查文件状态或进行数字测试, 只有这些测试完成才能做下一步动作test 命令: 用于测试和使用方括号时, 要注意在条件两边加上空格。

2024-05-22 10:15:00 769

原创 shell脚本程序学习之控制语句

栗子 : if_then.sh。

2024-05-21 11:15:00 540

原创 第一个QT项目笔记

打开 Qt Creator 界面选择 New Project 或者选择菜单栏 【文件】 -【新建文件或项目】 菜单项弹出 New Project 对话框,选择 Application,选择 Qt Widgets Application ,选择 Choose 按钮, 弹出如下对话框设置项目名称和路径,按照向导进行下一步,选择编译套件向导会默认添加一个继承自 CMainWindow 的类,可以在此修改类的名字和基类。

2024-05-21 10:45:00 309

原创 shell脚本程序自动打包

文件放在工程目录,终端cd 到当前工程路径下,回车执行,后面按提示执行。

2024-05-20 17:00:00 231

原创 Typora+PicGo+Gitee+node.js实现图片上传功能

进入PicGo, 在插件设置里搜索 gitee, 安装时, 就必须下载 node.js, 如果你已经下载node.js, 还提醒你下载node.js, 你就重启一下(重启解决一下问题, 哈哈哈哈哈), 安装我这个, 后面那个配置不一样, 虽然也可以配置成, 教程就不太一样了。填写完后, 就可以测试一下, Shift + win + s 就可可以随意切屏, 完成就点击剪贴板图片上传了, 如果没有提示成功, 重启一下, 然后再上传, 还不成功, 那你就要检查你的配置是不是错误了。

2024-05-20 12:00:00 1097

原创 进程的 概念、 组成、特征

在进程运行的过程中, 可能会请求等待某个事件的发生(如等待某种系统资源的分配, 或者等待其他进程的响应)。在这个事件发生之前, 进程无法继续往下执行, 此时操作系统会让这个进程下CPU, 并让它进入“阻塞态”当CPU空闲时, 又会选择另一个“” , 操作系统会让该进程下CPU,并回收内存空间等资源, 最后还要回收该进程的PCB。为了对同一个状态下的各个进程进行统一的管理,操作系统会将各个进程的PCB组织起来。, 当进程被创建时, 操作系统为其创建PCB, 当进程结束时, 会回收其PCB。

2024-05-19 14:45:00 1070

原创 操作系统的运行机制

一条” :处理器(CPU) 能识别、 执行的最基本命令程序运行的过程其实就是CPU执行一条一条的机器指令的过程注: 很多人习惯把 Linux、 Windows、 MacOS 的 “ 小黑框 ” 中使用的命令也称为“ 指令 ” , 其实这是“ 交互式命令接口 ” , 注意与本节的 “ 指令 ” 区别开。此 “ 指令 ” 指。

2024-05-19 10:15:00 943

原创 MySQL 配置, 避坑

mysql。

2024-05-18 11:45:00 239

原创 微型计算机组成结构

任何一个系统都可认为由组成部分用于接收进入系统的信息或数据 , 经过中心加工后 , 再由部分送出部分为整个系统提供操作运行的能源供给,包括输入和输出部分操作所需要的能量计算机系统的处理中心与部分之间的通道或接口都是使用的计算机系统可分为硬件部分和软件部分,但两者之间互相依存。

2024-05-18 10:15:00 153

原创 与网络无关的Linux--修改主机名、Ret Hat Linux 启动到文字界面\(不启动 xwindow\)、自动升级更新问题

一般还要修改 /etc/hosts 文件中的主机名。这样,无论你是否重启,主机名都修改成功。

2024-05-17 10:18:56 337

原创 Linux设备驱动开发详解笔记

设备驱动提供了硬件和应用软件之间的纽带应用软件时只需 调用系统软件的应用编程接口(API) 就可让硬件去完成要求的工作。

2024-05-17 10:16:54 1040

原创 AT&T ASM Syntax

开发一个OS,尽管绝大部分代码只需要用C/C++等高级语言就可以了,但至少和硬件相关部分的代码需要使用汇编语言,另外,由于启动部分的代码有大小限制,使用精练的汇编可以缩小目标代码的Size。另外,对于某些需要被经常调用的代码,使用汇编来写可以提高性能。所以我们必须了解汇编语言,即使你有可能并不喜欢它。如果你是计算机专业的话,在大学里你应该学习过Intel格式的8086/80386汇编,这里就不再讨论。

2024-05-16 13:45:00 1870

原创 Linux设备驱动开发详解

设备驱动提供了硬件和应用软件之间的纽带应用软件时只需 调用系统软件的应用编程接口(API) 就可让硬件去完成要求的工作。

2024-05-16 08:30:00 1631

原创 Linux 块设备驱动

是针对存储设备的,比如 SD 卡、 EMMC、 NAND Flash、 Nor Flash、 SPI Flash、机械硬盘、固态硬盘等所以其实就是这些存储设备驱动与字符设备相比 :块设备只能以进行读写访问,块是 linux 虚拟文件系统**(VFS**)基本的数据传输单位。字符设备是以进行数据传输的,不需要缓冲。块设备在结构上是可以进行的,对于这些设备的读写都是进行的,块设备一般都是使用来暂时存放数据,等到条件成熟后 , 在一次性将缓冲区中的数据写入块设备中。

2024-05-15 13:15:00 380

原创 嵌入式文件系统

在计算机系统中, 需要用到大量的程序和数据, 它们大部分以文件的形式存放在外部存储当中, 根据需要可随时调入内存使用必须熟悉外存的物理特性了解各种存储文件的属性记录文件在外存上的存储位置在多用户环境下, 必须能保证数据的安全性和一致性为了解决文件的管理问题, 在操作系统中出现了—文件系统负责存储器中文件的组织和分配提高对存储器资源的利用效率将文件的存取、 共享和保护等功能提供给操作系统和用户简化用户对文件的各项操作保证在多用户环境下文件的安全性和一致性。

2024-05-15 10:45:00 1206

原创 裸机工程开发调试

s5p6818寻址空间采用统一编址方式进行管理寻址空间映射图:Normal I/O就是我们常说的特殊功能寄存器GPIO等内容在这里进行配置iROM和iRAM启动, 是可以由BootMode相关引脚选择的多种程序加载方式, 即是从内部还是从外部等途径来加载程序(P94P93和P95决定了外部程序的加载顺序RST_CFGn对应的引脚通过查表和原理图来最终确定程序加载启动流程GNU组织不仅给我们带来了许多开源软件工程, 还带来了强大的GNU编译工具预处理器cppC编译器gccC++编译器g++汇编器as。

2024-05-14 11:00:00 792

原创 Linux字符设备驱动设计

计算机系统中存在着大量的设备, 操作系统要求能够控制和管理这些硬件, 而驱动就是帮助操作系统完成这个任务。驱动相当于硬件的接口, 它直接操作、 控制着我们的硬件, 操作系统通过驱动这个接口才能管理硬件。

2024-05-13 16:45:00 835

原创 Linux开发--Linux字符设备驱动设计

计算机系统中存在着大量的设备, 操作系统要求能够控制和管理这些硬件, 而驱动就是帮助操作系统完成这个任务。驱动相当于硬件的接口, 它直接操作、 控制着我们的硬件, 操作系统通过驱动这个接口才能管理硬件。

2024-05-13 13:15:00 881

原创 Linux开发--Linux设备驱动核心

@FilePath: \md\Linux\6818_Linux驱动.md。

2024-05-13 11:30:00 883

原创 Linux设备驱动核心

信号量采用睡眠等待机制: 如果有一个任务试图获得一个已经被占用的信号量时, 信号量会将其推到一个等待队列中睡眠, 当持有信号量的进程将信号量释放后, 处于等待队列中的那个任务被唤醒, 并将获得该信号量。中断上下文: 中断服务程序执行时所处的内核环境,CPU的所有寄存器的值、 中断相关的硬件参数( 中断控制器的寄存器中的值) 、 被打断进程的信息等。如果CPU接收到一个中断, 它会停止一切工作,调用中断处理函数, 因为进程调度依赖中断, 此时进程调度也会停止, 所以就要求我们的中断处理一定要快。

2024-05-13 09:00:00 909

原创 6818Linux内核开发移植

uImage : 是u-boot专用的一种内核镜像格式, 它是在zImage的基础上又添加了一个长度为64字节的标签头, 在u-boot启动时会去掉此头信息, 仍按zImage启动, 头信息主要用于区分不同格式的内核镜像。vmlinux 是由以下内核代码生成的非压缩镜像 (arch/arm/kernel/head.s、 kernel/、 mm/、 fs/、 ipc/、 crypto/、 lib/、drivers/、 net/等等)

2024-05-12 16:30:00 770

原创 Linux开发--Linux内核开发移植

uImage : 是u-boot专用的一种内核镜像格式, 它是在zImage的基础上又添加了一个长度为64字节的标签头, 在u-boot启动时会去掉此头信息, 仍按zImage启动, 头信息主要用于区分不同格式的内核镜像。vmlinux 是由以下内核代码生成的非压缩镜像 (arch/arm/kernel/head.s、 kernel/、 mm/、 fs/、 ipc/、 crypto/、 lib/、drivers/、 net/等等)

2024-05-12 15:00:00 786

原创 射频识别技术RFID

射频识别: 英文名称是(Radio Frequency Identification), 简称是“ RFID” 又称 无线射频识别, RFID是物联网的其中一种终端技术。RFID是一种通信技术, 可通过无线电讯号耦合识别特定目标并读写相关数据, 而无需识别系统与特定目标之间建立机械或光学接触。正被广泛用于采购分配、 商业贸易、 生产制造、 物流、 防伪以及军事用途上。RFID主要位于典型物联网架构中的感知层,是整个物联网的最底层, 也是与‘ 万物’链接的媒介之一。

2024-05-12 12:30:00 1541

原创 6818Linux内核--Bootloader应用分析

Bootloader中文解释为:启动引导程序Boot Loader 就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。通常,Boot Loader 是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的 Boot Loader 几乎是不可能的。

2024-05-12 10:45:00 1576

原创 射频识别技术RFID

射频识别: 英文名称是(Radio Frequency Identification), 简称是“ RFID” 又称 无线射频识别, RFID是物联网的其中一种终端技术。RFID是一种通信技术, 可通过无线电讯号耦合识别特定目标并读写相关数据, 而无需识别系统与特定目标之间建立机械或光学接触。正被广泛用于采购分配、 商业贸易、 生产制造、 物流、 防伪以及军事用途上。RFID主要位于典型物联网架构中的感知层,是整个物联网的最底层, 也是与‘ 万物’链接的媒介之一。

2024-05-11 16:15:00 857

原创 Linux开发--Bootloader应用分析

Bootloader中文解释为:启动引导程序Boot Loader 就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。通常,Boot Loader 是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的 Boot Loader 几乎是不可能的。

2024-05-11 13:30:00 973

原创 物联网概述

物联网(Internet of Things, IOT;也称为 Web of Things)是指通过各种信息传感设备,如传感器、射频识别(RFID)技术、全球定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时对任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。

2024-05-11 12:30:00 925

原创 物联网概述定义体系架构、与云计算关系

物联网(Internet of Things, IOT;也称为 Web of Things)是指通过各种信息传感设备,如传感器、射频识别(RFID)技术、全球定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时对任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,与互联网结合形成的一个巨大网络。其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。

2024-05-11 10:00:00 1361

原创 gtk_overviewGTK入门

数据类型,由类来定义对象)称为。

2024-05-10 13:30:00 1552

原创 Glade使用

由于开发板的库版本为 gtk2.12 之前的版本(gtk1.0), 所以只支持 libglade 模式, 而 Linux 环境的版本比较新,只能保存 GtkBuilder 格式的 Glade, 但是能运行 libglade 的代码, 而 window 的 glade 安装包两种格式都支持, 所以我们主要使用 window 的 glade 设计界面, 然后在 Linux 编译运行代码。控件监视区: 能够看到界面上所有的控件, 同时, 选中这个控件, 可以看到这个控件的具体类型。

2024-05-10 10:30:00 188

基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip

【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载! 基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip 基于Node.js+Vue的旅游推荐系统源码+运行说明(课程作业).zip

2024-05-16

课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip

【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载! 课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip 课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip 课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip 课程设计新项目-基于协同过滤算法和用户推荐矩阵的电影推荐系统python源码.zip

2024-05-16

基于Django框架和LDA机器学习模型实现北京旅游路线推荐系统python源码.zip

基于Django框架和LDA机器学习模型实现北京旅游路线推荐系统python源码.zip基于Django框架和LDA机器学习模型实现北京旅游路线推荐系统python源码.zip基于Django框架和LDA机器学习模型实现北京旅游路线推荐系统python源码.zip 基于Django框架和LDA机器学习模型实现北京旅游路线推荐系统python源码.zip 基于Django框架和LDA机器学习模型实现北京旅游路线推荐系统python源码.zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载

2024-05-12

SSD算法改进前与改进后python源码(替换backbone、注意力机制、损失函数、高效的特征融合).zip

SSD算法改进前与改进后python源码(替换backbone、注意力机制、损失函数、高效的特征融合).zipSSD算法改进前与改进后python源码(替换backbone、注意力机制、损失函数、高效的特征融合).zipSSD算法改进前与改进后python源码(替换backbone、注意力机制、损失函数、高效的特征融合).zipSSD算法改进前与改进后python源码(替换backbone、注意力机制、损失函数、高效的特征融合).zipSSD算法改进前与改进后python源码(替换backbone、 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!

2024-05-12

教室真实监控场景-课堂学生学习状态(8类)识别检测数据集8404张(含yolo格式标签).zip

教室真实监控场景-课堂学生学习状态(8类)识别检测数据集8404张(含yolo格式标签).zip 教室真实监控场景-课堂学生学习状态(8类)识别检测数据集8404张(含yolo格式标签).zip 教室真实监控场景-课堂学生学习状态(8类)识别检测数据集8404张(含yolo格式标签).zip 【数据集介绍】 1、该数据集是课堂真实场景,抓拍图片,包含8类课堂学习状态,使用labelImg工具标注的yolo格式标签(txt),目标检测算法YOLO系列可直接使用。 2、8种学习状态分别为:0 # 低头写字、1 # 低头看书、2 # 抬头听课、3 # 转头、4 # 举手、5 # 站立、6 # 小组讨论、7 # 教师指导 3、数据集标注精准无误,算法拟合很好,欢迎下载使用! 4、数据集适合用于毕设、课设、大作业、实训实验、实际项目开发等等 5、如果需要voc格式或者json格式的标签,请留言私信,我可以发给你转换脚本程序。

2024-05-06

基于YOLOv8开发的驾驶员抽烟打电话喝水低头行为及疲劳检测告警系统源码(带GUI界面+模型+评估指标曲线+部署教程).zip

基于YOLOv8开发的驾驶员抽烟打电话喝水低头行为及疲劳检测告警系统python源码(带GUI界面+模型+评估指标曲线+部署教程).zip 【环境配置】 1、下载安装anaconda、pycharm 2、打开anaconda,在anaconda promt终端,新建一个python3.9的虚拟环境 3、激活该虚拟空间,然后pip install -r requirements.txt,安装里面的软件包 4、识别检测人脸、睁眼、闭眼、张嘴(打哈欠)、闭嘴、抽烟、打电话、喝水,低头、并进行告警; 5、该项目可以用于疲劳驾驶检测 6、模型是通过落地项目使用的大量数据训练,效果很好,带有评估指标曲线等 7、项目适合于毕业设计、课设、作业、项目演示等 【运行操作】 以上环境配置成功后,运行main.py,打开界面,自动加载模型,开始测试即可 可以检测本地图片、视频、网络摄像头实时画面 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等

2024-04-30

目标检测数据集-真实工地场景机械+工人检测数据集1244张(含voc格式和yolo格式标签文件).zip

目标检测数据集-真实工地场景机械+工人检测数据集1244张(含voc格式和yolo格式标签文件).zip 【数据集介绍】 1、数据集使用labelImg工具标注,标签包含voc格式(xml文件)、yolo格式(txt文件),目标检测算法可直接使用。 2、数据集图片都是工地实际场景,包含两个类比:分别是"工地机械"、“工人”。两种类别数量分布均匀,共含3000多个目标(其中机械有1700多个,工人含有1300多个) 3、数据集背景丰富,标注精准无误,花了大量时间标注。 4、数据集适用于毕设、课设、实验、demo演示、科研、实际项目等 【备注】 欢迎下载使用,有疑问或者使用问题,可以私信留言,与我交流! 【数据集介绍】 1、数据集使用labelImg工具标注,标签包含voc格式(xml文件)、yolo格式(txt文件),目标检测算法可直接使用。 2、数据集图片都是工地实际场景,包含两个类比:分别是"工地机械"、“工人”。两种类别数量分布均匀,共含3000多个目标(其中机械有1700多个,工人含有1300多个) 3、数据集背景丰富,标注精准无误,花了大量时间标注。

2024-04-29

基于深度学习和CCPD、CRPD数据集实现的车牌识别、车牌颜色、车辆颜色识别系统python源码+数据集+模型.zip

基于深度学习和CCPD、CRPD数据集实现的车牌识别、车牌颜色、车辆颜色识别系统python源码+数据集+模型(支持国内各种车牌)识别准确率98.5%.zip 【项目说明】 支持车辆检测+车牌检测识别+车身颜色识别+车牌颜色识别 准确率达到98.5% 环境要求: python ==3.8 pytorch ==1.8 测试文件夹imgs,结果保存再 result 文件夹中 可自己训练测试模型 可以cpu或者gpu来做训练或者推理 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载

2024-04-28

汽车DMS新项目-基于YOLOv8算法实现危险驾驶行为识别检测语音提醒系统(含GUI界面+模型+部署运行说明+评估曲线).zip

汽车dms新项目-基于YOLOv8算法实现危险驾驶行为识别检测语音提醒系统(含GUI界面+模型+部署运行说明+评估曲线).zip 【项目说明】 【环境配置】 1、下载安装anaconda、pycharm 2、打开anaconda,在anaconda promt终端,新建一个python3.9的虚拟环境 3、激活该虚拟空间,然后pip install -r requirements.txt,安装里面的软件包 4、识别检测人脸、睁眼、闭眼、张嘴(打哈欠)、闭嘴、抽烟、打电话、喝水,并进行告警; 5、该项目可以用于疲劳驾驶检测。 【运行操作】 以上环境配置成功后,运行main.py,打开界面,自动加载模型,开始测试即可 可以检测本地图片、视频、网络摄像头实时画面 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流!鼓励大家进行二次开发改进!

2024-04-22

基于深度学习Resnet卷积神经网络实现煤矸石识别分类系统python源码带GUI界面(含数据集+模型+操作教程).zip

【训练过程】 1、先删除datasets文件夹中train.txt和val.txt里的内容。 2、修改Build_all_classes_path_to_txt.py文件中folder_path和txtfile_path的路径,照葫芦画瓢。改成自己的文件路径,需要执行两次,分别生成train.txt和val.txt(也就是数据集图片的路径及标签) 3、如果是训练其他数据,那就需要修改config.py中的配置内容了,如果不需要训练其他数据集,则不需修改。 4、运行train.py开始训练 【预测】 直接运行predict_gui.py打开GUI界面即可,可以任意操作。 也可以运行predict.py,不要GUI。 【备注】 以上运行之前,确保安装了pytorch、numpy、seaborn、opencv 运行过程,如果缺少什么包就安装什么包即可。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载

2024-04-19

新项目基于CNN网络实现的人脸检测识别系统python源码(含模型+GUI界面+运行操作说明,可二次开发,准确率98%).zip

毕业设计--深度学习新项目基于CNN网络实现的人脸检测识别系统python源码(含模型+GUI界面+运行操作说明,可二次开发,准确率98%).zip 【使用说明】 1、建议pycharm中打开运行项目,安装anaconda,在anaconda中配置python环境,python版本不建议太高,3.8或者3.7就行,免得不兼容,pycharm导入anaconda中的python解释器,anaconda中安装必要的软件包。 2、安装requirements.txt中的安装包,高版本也行,如果运行缺少啥pip install 安装什么 【运行必看】 1、需要录入的人脸图片,人脸图像放入face_dataset文件夹,命名格式如文件夹中的示例 2、运行python encoding.py ,生成录入人脸特征数据库文件 生成人脸数据库文件后,再操作第3步 3、运行python predict_gui.py 打开系统界面,然后进行操作即可 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息

2024-04-18

新项目基于机器学习的中文文本情感分析系统python源码(积极和消极)+详细使用说明+数据集+模型(保运行).zip

新项目基于机器学习的中文文本情感分析系统python源码(积极和消极)+详细使用说明+数据集+模型(保运行).zip 【项目说明】 1、数据集已经制作好,可自行训练,样本含积极评价和负面评价。 2、项目含有项目使用说明,照着操作即可,若遇到问题可私信交流,帮助解决,如果自己实在搞不定,也可以ff远程部署指导。 3、项目中已经含有训练好的模型,可直接使用。 4、识别分类文本,可自定义,运行后,给出识别结果是积极情绪还是消极情绪。 5、此项目不限于中文文本情感分类识别,还可以用于评价系统正面和负面情绪识别等 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载

2024-04-17

适用于YOLO系列算法-苹果香蕉橙子水果目标检测识别数据集800多张(含yolo格式和voc格式标签,下载直接使用).zip

适用于YOLO系列算法-苹果香蕉橙子水果目标检测识别数据集800多张(含yolo格式和voc格式标签,下载直接使用).zip 【数据集介绍】 该数据集为个人毕设自制数据,自己拍摄标注,三类水果。 苹果、橙子、香蕉;标注精准无误,背景丰富,目标大小分布均匀,yolov5、v7算法已训练,拟合很好,准确率达到97% 数据集可以做数据增强,如需数据增强脚本程序,请私信与我,可以做对比实验。 【备注】 一手高质量数据集,拒绝垃圾数据,欢迎下载使用。适用于毕设、课设、作业、实训实验、比赛等。放心下载! 适用于YOLO系列算法-苹果香蕉橙子水果目标检测识别数据集800多张(含yolo格式和voc格式标签,下载直接使用).zip 适用于YOLO系列算法-苹果香蕉橙子水果目标检测识别数据集800多张(含yolo格式和voc格式标签,下载直接使用).zip 适用于YOLO系列算法-苹果香蕉橙子水果目标检测识别数据集800多张(含yolo格式和voc格式标签,下载直接使用).zip 适用于YOLO系列算法-苹果香蕉橙子水果目标检测识别数据集800多张(含yolo格式和voc格式标签,下载直接使用)

2024-04-07

适用于图像分类识别-医学OCT视网膜疾病识别分类数据集(一万多张,已划分训练、验证、测试数据).zip

【数据集说明】 适用于图像分类识别-医学OCT视网膜疾病识别分类数据集(一万多张,已划分训练、验证、测试数据).zip 适用于图像分类识别-医学OCT视网膜疾病识别分类数据集(一万多张,已划分训练、验证、测试数据).zip 适用于图像分类识别-医学OCT视网膜疾病识别分类数据集(一万多张,已划分训练、验证、测试数据).zip 适用于图像分类识别-医学OCT视网膜疾病识别分类数据集(一万多张,已划分训练、验证、测试数据).zip 适用于图像分类识别-医学OCT视网膜疾病识别分类数据集(一万多张,已划分训练、验证、测试数据).zip 类别包含4类,分别是:CNV、DME、DRUSEN、NORMAL 4种类别情况。最左侧为脉络膜新生血管(CNV),具有新生血管膜(白色箭头)和相关的视网膜下液(箭头);左中为糖尿病性黄斑水肿(DME)与视网膜增厚相关的视网膜内液(箭头);中右为早期AMD,存在多个玻璃疣(箭头);最右侧具有保留的中心凹轮廓且没有任何视网膜液及水肿的正常视网膜(NORMAL)。

2024-04-07

flavia植物叶片分类数据集完整版(已做好32类划分,可直接训练).zip

flavia植物叶片分类数据集完整版(已做好32类划分,可直接训练).zip 类别:32类 毛竹 七叶树 安徽小檗 紫荆 木蓝 鸡爪槭 滇南 刺楸 天竺桂 栾 大果冬青 海桐 腊梅 香樟木 日本珊瑚树 桂花 雪松 银杏 紫薇 夹竹桃 罗汉松 日本晚樱 女贞 香椿 桃 木莲 三角槭 阔叶十大功劳 荷花木兰 沙兰杨 鹅掌楸 柑橘 flavia植物叶片分类数据集完整版(已做好32类划分,可直接训练).zip flavia植物叶片分类数据集完整版(已做好32类划分,可直接训练).zip flavia植物叶片分类数据集完整版(已做好32类划分,可直接训练).zip flavia植物叶片分类数据集完整版(已做好32类划分,可直接训练).zip flavia植物叶片分类数据集完整版(已做好32类划分,可直接训练).zipflavia植物叶片分类数据集完整版(已做好32类划分,可直接训

2024-04-01

基于深度学习(6种算法)和传统机器学习分别实现Flavia叶片数据集识别分类python源码(含详细使用说明+注释).zip

基于深度学习(6种算法)和传统机器学习分别实现Flavia叶片数据集识别分类python源码(含详细使用说明+注释) 【项目介绍】 深度学习算法包含6种:分别是Alexnet、GoogLeNet、HRnet、Resnet18、Selfnet、VGG11,可对比 1. Leaf_data_acquisition.py ## 1.1 介绍说明 提取叶片特征,并保存为csv文件,为后续使用机器学习算法进行分类做准备。 ## 1.2 图像预处理 1. histogram(image)函数的作用是获取输入图片R、G、B三通道的像素值分布情况。 2. binarization(imgray)函数的作用是分别使用2x2、3x3、5x5的卷积核对输入的灰度图进行平均滤波和二值化处理。 3. margin_detection(imgbi)函数的作用是使用拉普拉斯算子提取图像边缘特征。 ## 1.3 特征提取 1. feature5_extraction(imgray, thresh_5x5, thresh_3x3, thresh_2x2)函数的作用是提取5种几何特征,即最小外接圆直径、最小外接矩形的宽度和高度、不同卷积核平均滤波后的叶片面积(2x2、3x3、5x5)、3x3卷积核平均滤波后的叶片周长。 2. feature12_extraction(thresh, feature)函数的作用是根据上面提取到的5种几何特征,获取12种数字形态特征,即平滑因子、纵横比、形状因子、矩形程度、狭窄因子、直径周长比、周长与长宽比、5种静脉特征。 ## 1.4 数据降维 data_PCA(img_data)函数的作用是将12种数字形态特征降维到5维。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步! # 2. Leaf_classification_ML.py ## 2.1 介绍说明 根据叶片特征,使用不同的机器学习算法对叶片进行分类。 ## 2.2 数据预处理 1. encode(train, test)函数的作用是对训练集和测试集中的数据进行编码,以及其他预处理操作。 2. deta_acquisition()函数的作用是对训练集按4:1的比例划分为训练集和测试集(验证集)。 ## 2.3 叶片分类 ML_classifier(X_train, X_test, y_train, y_test)函数的作用是使用不同的机器学习算法对叶片进行分类,并显示分类准确率和损失函数,其中列表**classifiers**中包含了所使用的机器学习算法。 ## 2.4 实验结果

2024-04-01

目标检测算法-非洲野生动物(水牛、大象、犀牛、斑马)识别检测数据集1504张(含yolo格式标签、已划分训练验证测试集).zip

目标检测算法-非洲野生动物(水牛、大象、犀牛、斑马)识别检测数据集1504张(含yolo格式标签、已划分训练验证测试集).zip 【数据集介绍】 数据集分为三个子集: 训练集:包含 1052 幅图像 验证集:包括 225 幅图像 测试集:由 227 幅图像 【应用】 该数据集可用于各种计算机视觉任务,如物体检测、物体跟踪和研究。具体来说,它可用于训练和评估识别图像中非洲野生动物对象的模型,这可应用于野生动物保护、生态研究以及自然保护区和保护区的监测工作。此外,它还可以作为宝贵的教育资源,使学生和研究人员能够研究和了解不同动物物种的特征和行为。 数据标注精准,背景丰富,目标有大有小,分布均匀,算法拟合较好,该数据集标签包含yolo(txt)格式。如需voc或者json格式标签,请私信! 野生动物类别:斑马、大象、水牛、犀牛 YOLO系列算法及其他多种目标检测算法可直接使用!!! YOLO系列算法及其他多种目标检测算法可直接使用!!! YOLO系列算法及其他多种目标检测算法可直接使用!!! YOLO系列算法及其他多种目标检测算法可直接使用!!!

2024-03-29

基于YOLOv8实现的汽车部件实例分割检测系统python源码(含数据集+训练好的模型+GUI界面+使用说明).zip

基于YOLOv8实现的汽车部件实例分割检测系统python源码(含数据集+训练好的模型+GUI界面+使用说明).zip 【使用说明】 1、python版本必须为3.9(建议再anaconda中安装选择python),项目使用pycharm打开运行; 2、按照项目使用说明一步步安装操作即可; 3、环境配置万,直接运行main.py打开GUI界面。 如果使用过程遇到任何问题请私信与我沟通,我将帮助解决你的问题。项目带有模型、数据,可自定义训练识别分割其他目标。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步!

2024-03-29

适用于YOLOv5YOLOv8实例分割的流水线包裹分割检测数据集2000多张及对应的标签文件(已划分,直接使用).zip

适用于YOLOv5YOLOv8实例分割的流水线包裹分割检测数据集2000多张及对应的标签文件(已划分,直接使用).zip 【数据集介绍】 该数据集包含一组多样化的图像,展示了不同背景和环境下的各种包装,是训练和评估分割模型的宝贵资源。无论您是从事物流、仓库自动化还是任何需要对包装进行精确分析的应用,包装分割数据集都能为您提供一套有针对性的综合图像,以提高计算机视觉算法的性能。 训练集:包含 1920 幅图像及标签 测试集:由 89 幅图像及标签 验证集:由 188 幅图像及标签 样本数据和注释 包裹分割数据集包括从多个角度拍摄的各种图像和视频。以下是数据集中的数据实例,并附有各自的注释 这幅图像显示了图像对象检测的一个实例,其特点是注释了边界框,并用掩码勾勒出识别出的对象。该数据集包含在不同地点、环境和密度下拍摄的各种图像。该数据集是开发该任务专用模型的综合资源。 【备注】 数据集标注精准无误,包含一类,可用于目标分割检测项目,欢迎下载使用,有问题可以私信交流学习!

2024-03-29

适用于YOLOv5-YOLOv8汽车零部件(23种类别)检测分割数据集3000多张(带标注好的yolo格式标签已划分好).zip

适用于YOLOv5-YOLOv8汽车零部件(23种类别)检测分割数据集3000多张(带标注好的yolo格式标签已划分好).zip 专为计算机视觉应用而设计的图像和视频集合,尤其侧重于与汽车零件相关的分割任务。该数据集提供了一组从多个角度捕捉的多样化视觉图像,为训练和测试分割模型提供了宝贵的注释示例。 训练集:包括 3156 幅图像 测试集:由 276 幅图像组成 验证集:由 401 幅图像组成 【应用】 汽车零部件分类可应用于汽车质量控制、汽车维修、电子商务编目、交通监控、自动驾驶汽车、保险处理、回收利用和智能城市计划。它通过准确识别和分类不同的汽车零部件来简化流程,从而提高各行业的效率和自动化程度 23种汽车零配件类别,在资源中已有注释每个类别得名称! 欢迎下载使用,交流,有任何使用问题,请及时私信与我!!!

2024-03-29

基于深度学习的乡村道路路灯实例分割系统python源码+数据集+训练好的模型+评估指标曲线(带GUI界面).zip

毕设新项目基于深度学习的乡村道路路灯实例分割系统python源码+数据集+训练好的模型+评估指标曲线(带GUI界面).zip 【使用说明】 1、python版本必须为3.9(建议再anaconda中安装选择python),项目使用pycharm打开运行; 2、按照项目说明一步步安装操作即可; 3、环境配置万,直接运行main.py打开GUI界面。 如果使用过程遇到任何问题请私信与我沟通,我将帮助解决你的问题。项目带有模型、数据、评估曲线,可自定义训练识别分割其他目标。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步!

2024-03-29

基于Python编程实现的11种小游戏源码+项目说明(可学习借鉴).zip

基于Python编程实现的11种小游戏源码+项目说明(可学习借鉴).zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步! 基于Python编程实现的11种小游戏源码+项目说明(可学习借鉴).zip基于Python编程实现的11种小游戏源码+项目说明(可学习借鉴).zip基于Python编程实现的11种小游戏源码+项目说明(可学习借鉴).zip 基于Python编程实现的11种小游戏源码+项目说明(可学习借鉴).zip基于Python编程实现的11种小游戏源码+项目说明(可学习借鉴).zip基于Python编程实现的

2024-03-28

毕设新项目基于Python的网络数据加密与隐私保护算法研究与实现完整源码+sql数据库+部署说明+运行视频.zip

毕设新项目基于Python的网络数据加密与隐私保护算法研究与实现完整源码+sql数据库+部署说明+运行视频.zip 【运行步骤】 需要先安装Python的相关依赖:django==3.2.8,pymysql,pillow使用pip install 安装 第一步:创建数据库,数据库名:data_encryption 第二步:执行SQL语句,打开data_encryption.sql文件,运行该文件中的SQL语句 第三步:修改源代码中的settings.py文件,改成自己的mysql数据库用户名和密码 第四步:运行命令:python manage.py runserver 8000 第五步:打开浏览器查看https://127.0.0.1:8000 测试账户 账户1: 用户名:admin 密码:123 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。

2024-03-25

深度学习工业缺陷检测-19种缺陷检测数据集(含voc格式和yolo格式标签,YOLO系列算法直接使用).zip

深度学习工业缺陷检测-19种缺陷检测数据集(含voc格式和yolo格式标签,YOLO系列算法直接使用).zip 【数据集介绍】 1、数据集使用labelimg工具标注,标注精确无误,yolov5训练检测准确率达到98% 2、数据集缺陷划分的种类为 ['carpet_color', 'carpet_cut', 'carpet_hole', 'carpet_metal_contamination', 'carpet_thread', 'grid_bent', 'grid_broken', 'grid_glue', 'grid_metal_contamination', 'grid_thread', 'hazelnut_crack', 'hazelnut_cut', 'hazelnut_hole', 'hazelnut_print', 'leather_color', 'leather_cut', 'leather_fold', 'leather_glue', 'leather_poke'] 3、涵盖了地毯、皮革、电缆、铁丝网对应的各种缺陷数据。 【备注】 欢迎下载使用,适合毕设、课设、比赛

2024-03-21

工业缺陷检测项目数据-晶体管缺陷检测数据集.zip

工业缺陷检测项目数据-晶体管缺陷检测数据集.zip 工业缺陷检测项目数据-晶体管缺陷检测数据集.zip 工业缺陷检测项目数据-晶体管缺陷检测数据集.zip 【数据集介绍】 1、工业检测为重点的异常检测方法基准数据集 2、高分辨率图像,每个类别包括一组无缺陷的训练图像和具有各种缺陷的图像的测试集以及没有缺陷的图像。 3、适用于用于无监督异常检测、图像分类识别算法(resnet、vgg、Googlenet、mobilenet等等) 数据集已做好划分:分别包含[bent_lead、cut_lead、damaged_case、good、misplaced],共5类 【备注】 欢迎下载使用,有问题请留言私信!

2024-03-21

制造工业缺陷数据-地毯缺陷检测数据集.zip

制造工业缺陷数据-地毯缺陷检测数据集.zip制造工业缺陷数据-地毯缺陷检测数据集.zip 制造工业缺陷数据-地毯缺陷检测数据集.zip制造工业缺陷数据-地毯缺陷检测数据集.zip 【数据集介绍】 1、工业检测为重点的异常检测方法基准数据集 2、高分辨率图像,每个类别包括一组无缺陷的训练图像和具有各种缺陷的图像的测试集以及没有缺陷的图像。 3、适用于用于无监督异常检测、图像分类识别算法(resnet、vgg、Googlenet、mobilenet等等) 数据集已做好划分:分别包含[color、cut、metal_contamination、thread、hole、good],共6类 【备注】 欢迎下载使用,有问题请留言私信!

2024-03-21

无监督学习数据工业缺陷检测-牙刷缺陷检测数据集.zip

无监督学习数据工业缺陷检测-牙刷缺陷检测数据集.zip 无监督学习数据工业缺陷检测-牙刷缺陷检测数据集.zip 无监督学习数据工业缺陷检测-牙刷缺陷检测数据集.zip 【数据集介绍】 1、工业检测为重点的异常检测方法基准数据集 2、高分辨率图像,每个类别包括一组无缺陷的训练图像和具有各种缺陷的图像的测试集以及没有缺陷的图像。 3、适用于用于无监督异常检测、图像分类识别算法(resnet、vgg、Googlenet、mobilenet等等) 数据集已做好划分:分别包含[defective、good],共2类 【备注】 欢迎下载使用,有问题请留言私信!

2024-03-21

工业缺陷检测-榛子缺陷检测数据集.zip

工业缺陷检测-榛子缺陷检测数据集.zip工业缺陷检测-榛子缺陷检测数据集.zip工业缺陷检测-榛子缺陷检测数据集.zip工业缺陷检测-榛子缺陷检测数据集.zip工业缺陷检测-榛子缺陷检测数据集.zip工业缺陷检测-榛子缺陷检测数据集.zip 【数据集介绍】 1、工业检测为重点的异常检测方法基准数据集 2、高分辨率图像,每个类别包括一组无缺陷的训练图像和具有各种缺陷的图像的测试集以及没有缺陷的图像。 3、适用于用于无监督异常检测、图像分类识别算法(resnet、vgg、Googlenet、mobilenet等等) 数据集已做好划分:分别包含[crack、cut、hole、print、good],共5类 【备注】 欢迎下载使用,有问题请留言私信!

2024-03-21

工业缺陷检测数据集-电缆缺陷检测数据集.zip

工业缺陷检测数据集-电缆缺陷检测数据集.zip工业缺陷检测数据集-电缆缺陷检测数据集.zip工业缺陷检测数据集-电缆缺陷检测数据集.zip工业缺陷检测数据集-电缆缺陷检测数据集.zip 【数据集介绍】 1、工业检测为重点的异常检测方法基准数据集 2、高分辨率图像,每个类别包括一组无缺陷的训练图像和具有各种缺陷的图像的测试集以及没有缺陷的图像。 3、适用于用于无监督异常检测、图像分类识别算法(resnet、vgg、Googlenet、mobilenet等等) 数据集已做好划分:分别包含[bent_wire、cable_swap、combined、cut_inner_insulation、cut_outer_insulation、good、missing_cable、missing_wire、poke_insulation],共9类 【备注】 欢迎下载使用,有问题请留言私信!

2024-03-21

无监督异常检测工业缺陷数据集-皮革缺陷检测数据集.zip

无监督异常检测工业缺陷数据集-皮革缺陷检测数据集.zip 无监督异常检测工业缺陷数据集-皮革缺陷检测数据集.zip 无监督异常检测工业缺陷数据集-皮革缺陷检测数据集.zip 【数据集介绍】 1、工业检测为重点的异常检测方法基准数据集 2、高分辨率图像,每个类别包括一组无缺陷的训练图像和具有各种缺陷的图像的测试集以及没有缺陷的图像。 3、适用于用于无监督异常检测、图像分类识别算法(resnet、vgg、Googlenet、mobilenet等等) 数据集已做好划分:分别包含[color、cut、poke、fold、glue、good],共6类 【备注】 欢迎下载使用,有问题请留言私信!

2024-03-21

MVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集.zip

MVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集.zipMVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集.zipMVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集.zipMVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集.zipMVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集.zipMVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集.zipMVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集.zipMVTec AD工业缺陷数据集-铁丝网格缺陷检测数据集 【数据集介绍】 1、工业检测为重点的异常检测方法基准数据集 2、高分辨率图像,每个类别包括一组无缺陷的训练图像和具有各种缺陷的图像的测试集以及没有缺陷的图像。 3、适用于用于无监督异常检测、图像分类识别算法(resnet、vgg、Googlenet、mobilenet等等) 数据集已做好划分:分别包含[bent、broken、glue、good、metal_contamination、thread],共6类 【备注】 欢迎下载使用,有问题请留言私信!

2024-03-21

基于卷积神经网络+Pyqt5+opencv实现人员离岗检测告警系统(含使用说明+模型+运行视频).zip

基于卷积神经网络+Pyqt5+opencv实现人员离岗检测告警系统(含使用说明+模型+运行视频) 1、先安装anaconda和pycharm 路径最好别搞中文 2、在anaconda中新建虚拟空间,创建python==3.8 3、在python==3.8的空间进行安装必要的安装包(见requirements.txt) 4、完成3步后,在pycharm中打开项目,并导入anaconda中的python环境(python3.8的) 5、运行main.py即可打开系统界面,开始操作; 特别强调: 实时检测固定视角本地视频、或者网络视频流时。 以本地视频为例,绘制危险区域 运行提取背景.py得到background.png,通过电脑自带”画图“工具打开,鼠标光标所在位置,在左下角有该点坐标显示 以这种方式,选取并记录危险区域左上顶点和右下顶点的xy坐标,并修改main.py中对应代码161行即可。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!有问题请及时私信沟通!包答疑! 拒绝垃圾、不完整、无使用教程的项目!

2024-05-24

基于深度学习的废旧物识别分类回收系统python源码(带GUI界面+模型+数据集+使用说明+运行视频).zip

基于深度学习的废旧物识别分类回收系统python源码(带GUI界面+模型+数据集+使用说明+运行视频) 【环境搭建】 需要安装如下包 python3.8 matplotlib numpy opencv-python Pillow PyYAML scipy torch torchvision tqdm pyqt5 建议pycharm中打开运行项目,安装anaconda,在anaconda中配置python环境,python版本不建议太高,3.8或者3.7就行,免得不兼容,pycharm导入anaconda中的python解释器,anaconda中安装必要的软件包。 【训练过程】 1、先删除datasets文件夹中train.txt和val.txt里的内容。 2、修改Build_all_classes_path_to_txt.py文件中folder_path和txtfile_path的路径,照葫芦画瓢。改成自己的文件路径,需要执行两次,分别生成train.txt和val.txt(也就是数据集图片的路径及标签) 3、如果是训练其他数据,那就需要修改config.py中的配置内容了,如果不需要训练其他数据集,则不需修改。 4、运行train.py开始训练 【预测】 直接运行predict_gui.py打开GUI界面即可,可以任意操作。 也可以运行predict.py,不要GUI。 资源内已经含有数据集、使用说明、运行视频、训练方法、预测方法、训练好的模型 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习

2024-05-23

新毕设项目-分别基于CNN和RNN网络实现中文文本类型识别分类系统python源码(含10类文本数据集+超详细注释).zip

新毕设项目-分别基于CNN和RNN网络实现中文文本类型识别分类系统python源码(含10类文本数据集+超详细注释).zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习 【资源说明】 1、该新项目分别使用RNN、CNN网络实现中文文本类型识别分类。 2、文本数据来自新闻,包含体育,科技,游戏,财经,房产,家居等各方面。 3、可自己训练模型及预测。 4、项目源码带有超详细注释,容易理解和掌握,欢迎学习借鉴! 5、项目也属于新闻标题、内容分类,可以用于新闻标题分类系统等 6、可以基于此进行各种二次开发! 欢迎下载!欢迎交流学习!

2024-05-22

乳腺癌细胞和正常细胞分类识别数据集13403张.zip

乳腺癌细胞和正常细胞分类识别数据集13403张.zip 乳腺癌细胞和正常细胞分类识别数据集13403张.zip 乳腺癌细胞和正常细胞分类识别数据集13403张.zip 【数据集介绍】 1、该数据集包含两类图片,分别为正常细胞图片、乳腺癌细胞图片,已做好划分,图片像素为50*50,可自定义根据算法需求缩放 2、改数据集属于分类数据集、非目标检测数据,不可用于yolo目标检测算法;适用于resnst、vgg、mobilenet、lenet等等分类模型。 3、属于2分类数据集,适用于作业、课设、毕设、算法验证等各种项目使用! 欢迎下载使用!欢迎交流学习!

2024-05-22

基于YOLOv5实现单目摄像头目标距离检测项目python源码+使用说明+模型(毕设新项目).zip

基于YOLOv5实现单目摄像头目标距离检测项目python源码+使用说明+模型(毕设新项目).zip 目标检测:YOLOv5可以检测图像中的各种目标,并标记出它们的位置和类别 目标尺寸估计:通过YOLOv5检测到的目标在图像中的尺寸大小,结合目标物体的实际尺寸或已知的参考物体尺寸,可以推断目标距离摄像头的远近 视差计算:通过目标在图像中的像素坐标位置,结合摄像头参数和目标尺寸信息,可以计算出目标与摄像头之间的视差,从而推断目标距离。 【项目说明】 本项目为新开发的单目摄像头测距项目, 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习

2024-05-21

基于Pytorc框架CNN网络开发的露天停车位识别检测计数系统源码+使用说明+数据集+模型(可训练其他模型及二次开发).zip

基于Pytorch深度学习框架CNN网络开发的露天停车位识别检测计数系统源码+使用说明+数据集(可训练其他模型及二次开发) 操作説明: 备注:视频或者图片为露天停车场,如果有新的视频场景,需要重新按照流程在做opencv处理生成spot_dict.pickle,以及使用resnet18训练分类模型(停车位占用与停车空置) 整体流程 【前期准备】 1、执行data_process.py生成车位字典文件spot_dict.pickle 2、执行train.py训练resnet18二分类模型(模型以训练好,在checkpoints里面)--训练集已经制作好,可直接训练 【测试图片或者视频】 1、根据自己情况,修改test.py中的parser.add_argument中的参数(有提示),执行test.py即可 备注:检测视频时,因为单帧处理速度有些慢,不要着急,测试结果视频会在VideoInfer_result文件夹中。 建议pycharm中打开运行项目,安装anaconda,在anaconda中配置python环境,python版本不建议太高,3.8或者3.7就行,免得不兼容,pycharm导入anaconda中的python解释器,anaconda中安装必要的软件包。 特别强调:项目代码也包含了其他CNN算法实现:如mobilenetv2、mobilenetv3、repvgg。也可以用这些网络训练模型做对比测试。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习

2024-05-20

基于深度学习LPRnet算法实现的车牌识别车标识别检测系统python源码+模型+项目部署说明(毕设新项目).zip

【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习 车标识别检测模型: \chebiao_rec\runs\exp_chebiao\weights文件夹中 #项目运行步骤 1、pip install -r requirements.txt,安装里面的软件包 2、确保安装成功后再运行detect.py 备注:项目不要有中文路径,另外建议pycharm中打开项目运行,在anaconda中配置python环境并安装软件包 该项目可以直接识别出车牌+车标 ,识别结果存放在\inference\output文件夹下 车牌准确率98%,车标识别94

2024-05-17

新项目基于YOLOv5+Openpose+Resnet18实现远距离抽烟动作识别检测系统源码+使用说明+模型+数据集.zip

【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载! 通过 yolov5 + openpose + resnet18实现远距离抽烟动作行为检测 需要用的模型文件 已在代码中openpose文件夹 Classification_smoke_pytorch\checkpoints中为resnet18 分类模型 运行runOpenpose.py 只跑了open pose 可以获得人体的关键点图(需简单改下,请看代码),用于后续的.jit模型训练 人体的关键点图会保存在data/test中 该项目适用于远距离抽烟行为检测,弥补单独yolov5来检测吸烟行为的缺陷 方案一:使用yolov5 + openpose + resnet18模型来检测吸烟 运行 detect.py 会先进行yolo目标检测,检测到人后会生成骨骼点图,然后送入resnet网络进行分析,最后给出结果,然后在画面上显示 方案二:直接使用openpose + resnet18模型来检测吸烟 运行 runOpenpose.py,代码路径需改成自己的。 如果想要检测其他姿势 (使用yolov5+openpose): 1.收集图片,跑runOpenpose.py 文件获得人体的关键点图 2.对人体的关键点图根据自己想要的进行分类放在data/train 和 data/test 3.跑 action_detect/train.py 或者使用yolov5 + openpose + resnet18,需要训练rensnet模型 吸烟动作关键点分类数据集:data目录下的train和test。可自己生成其他的或增加

2024-05-16

基于深度学习视频序列实现人体动作(鼓掌、挥手、跑、拳击、跳、走)分类识别matlab源码+运行视频+论文+详细注释.zip

【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载! 基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip 基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip 基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip 基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip 基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip 基于深度学习视频序列实现人体动作分类识别matlab源码+运行视频+论文+详细注释.zip

2024-05-16

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除