记录使用Tensorflow的一些问题
1.Tensorflow的模型保存与加载
- 仅加载参数
- 加载图结构,与参数
上面的链接是英文版,可以同时参考翻译版
2.上述中,无法得知tensor_name
- 如果使用tensorflow2.0以上版本,要在compat.v1中去调用
- graph = tf.compat.v1.get_default_graph()能得到当前的图结构
- [print(n.name) for n in graph.as_graph_def().node]可以输出所有的tensor_name
- 但是,如果本身模型代码结构不清晰,上步骤中,并不能很好的获取我们想要的tensor_name
- 所以,在模型中进行向前推理时的Debug,如下所示,找到想要的tensor_name,然后调用
图1:我重新加载,要feed的输入张量,第一个即是张量名称;
图2:我想要的结果;
3.安装pycocotools
pip install git+https://gitee.com/jaychen969696/cocoapi.git#subdirectory=PythonAPI
4.有时候需要复原Base anaconda的环境
conda install --revision 0
5.安装实时翻译工具goldendict
pip install google-translate-for-goldendict
6.安装Tensorflow的时候经常因为cuda和cudnn的版本冲突无法使用GPU
- 直接用conda install 自动配置环境
conda install tensorflow-gpu=1.13 -y
- 使用高版本的Tensorflow时,可直接运行pip命令
pip install tensorflow==2.3 --use--feature=2020-resolver
注意:容易出现Load DLL错误,要安装2015/17/19的可再发行包。