记录使用Tensorflow的一些问题


1.Tensorflow的模型保存与加载

参考教程链接

  • 仅加载参数
  • 加载图结构,与参数

上面的链接是英文版,可以同时参考翻译版


2.上述中,无法得知tensor_name
  • 如果使用tensorflow2.0以上版本,要在compat.v1中去调用
  • graph = tf.compat.v1.get_default_graph()能得到当前的图结构
  • [print(n.name) for n in graph.as_graph_def().node]可以输出所有的tensor_name
  • 但是,如果本身模型代码结构不清晰,上步骤中,并不能很好的获取我们想要的tensor_name
  • 所以,在模型中进行向前推理时的Debug,如下所示,找到想要的tensor_name,然后调用

图1:我重新加载,要feed的输入张量,第一个即是张量名称;
我想要的张量名

图2:我想要的结果;
我想要的结果


3.安装pycocotools
pip install git+https://gitee.com/jaychen969696/cocoapi.git#subdirectory=PythonAPI

4.有时候需要复原Base anaconda的环境
conda install --revision 0

5.安装实时翻译工具goldendict
pip install google-translate-for-goldendict

6.安装Tensorflow的时候经常因为cuda和cudnn的版本冲突无法使用GPU
  • 直接用conda install 自动配置环境
conda install tensorflow-gpu=1.13 -y
  • 使用高版本的Tensorflow时,可直接运行pip命令
pip install tensorflow==2.3 --use--feature=2020-resolver

注意:容易出现Load DLL错误,要安装2015/17/19的可再发行包

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值