la4287(有向图的强连通分量和DAG)

21 篇文章 0 订阅
3 篇文章 0 订阅

题意:

给出推到关系,那么问还要几步才能推出所有命题等价

思路:

命题等价就是双连通,所以我们就先求得一共有几个连通分量,然后把每个连通分量看成一个点,就形成了DAG,那么这个DAG需要几条边才能形成强连通

的算法是强连通分量数-(出度与入度的最大值)

代码:

#include<cstdio>
#include<stack>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 30000;
vector<int> g[maxn];
stack<int> s;
int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
int in[maxn], out[maxn];
int m, n;
void init() {
	memset(pre, 0, sizeof(pre));
	memset(lowlink, 0, sizeof(lowlink));
	memset(sccno, 0, sizeof(sccno));
	memset(in, 0, sizeof(in));
	memset(out, 0, sizeof(out));
	dfs_clock = scc_cnt = 0;
	for (int i = 0; i < n; i++)  
            g[i].clear();  
}

  
void dfs(int u) {
	pre[u] = lowlink[u] = ++dfs_clock;
	s.push(u);

	for(int i=0; i<g[u].size(); i++) {
		int v = g[u][i];
		if(!pre[v]) {
			dfs(v);
			lowlink[u] = min(lowlink[v], lowlink[u]);
		}
		else if(!sccno[v]) {
			lowlink[u] = min(lowlink[u], pre[v]);
		}
	}
	int x;
	if(pre[u] == lowlink[u]) {
		scc_cnt++;
		while(1) {
			x = s.top();
			s.pop();
			sccno[x] = scc_cnt;
			if(x == u) break;
		}
	}
}

void find_scc() {
	for(int i=0; i<n; i++) {
		if(!pre[i]) dfs(i);
	}
}


int main() {
	int kase;
	int a, b;
	scanf("%d", &kase);
	while(kase --) {
		scanf("%d %d", &n, &m);
		init();
		for(int i=0; i<m; i++) {
			scanf("%d %d", &a, &b);
			a--;
			b--;
			g[a].push_back(b);
		}
		find_scc();
		for(int i=1; i<=scc_cnt; i++) {
			in[i] = out[i] = 1;//假设5个独立的点
		}
		for(int i=0; i<n; i++) {
			for(int j=0; j<g[i].size(); j++) {
				int v = g[i][j];
				if(sccno[i] != sccno[v]) {
					in[sccno[i]] = out[sccno[v]] = 0;//发现连接就去掉一个度,如果都有出去有进来就行(很迷)
				}
			}
		}
		int a = 0, b = 0;
		for(int i=1; i<=scc_cnt; i++) {
			if(in[i]) a++;
			if(out[i]) b++;
		}
		int ans = max(a,b);
		if(scc_cnt == 1) ans = 0;
		printf("%d\n", ans);

	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值