#include <iostream>
#include <cstdio>
#include <malloc.h>
#include <cstring>
using namespace std;
#define MAX 100000000
typedef char **HuffmanCode; //动态分配数组存储赫夫曼编码表
typedef struct
{
unsigned int weight;
unsigned int parent,lchild,rchild;
}HTNode,*HuffmanTree; //动态分配数组存贮赫夫曼树
int imin(HuffmanTree t,int i)
{ //返回赫夫曼树t的前i个结点中权值最小的树的根结点序号
int m;
unsigned int k=MAX;
for(int j=1;j<=i;j++)
{
if(t[j].weight<k&&t[j].parent==0)//t[j]的权小于k,又是树的根节点
{
k=t[j].weight; //t[j]的权值赋值给k
m=j; //序号赋给m
}
}
t[m].parent=1; //给选中的根节点的双亲赋非0值,避免二次查找
return m; //返回权值最小的根节点的序号
}
void select(HuffmanTree t,int i,int &s1,int &s2)
{//在赫夫曼树t的前i个结点选择两个权值最小的树的根节点的序号,s1为权值较小的
int j;
s1=imin(t,i);
s2=imin(t,i);
if(s1>s2) //交换确保正确
{
j=s1;
s1=s2;
s2=j;
}
}
void HuffmanCoding(HuffmanTree &HT,HuffmanCode &HC,int *w,int n)
{
int start,m,i,s1,s2;
unsigned f,c;
HuffmanTree p;
char *cd;
if(n<=1) //叶子结点数不大于1
return ;
m=2*n-1; //n个叶子结点的赫夫曼树共有m个结点
HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); //0号单元未用
for(p=HT+1,i=1;i<=n;i++,p++,w++)
{ //p的初值指向1号单元
(*p).weight=*w; //赋权值
(*p).parent=0; //双亲域为空(是根节点)
(*p).lchild=0; //左右孩子为空(是叶子结点,即单节点)
(*p).rchild=0;
}
for(;i<=m;i++,p++) //i从n+1到m
(*p).parent=0; //其余结点的双亲域初值为0
for(i=n+1;i<=m;i++) //建赫夫曼树
{//在HT[1--i-1]中选择parent为0且weight最小的两个结点,其序号分别为s1,s2
select(HT,i-1,s1,s2);//i号分别是s1,s2的双亲
HT[s1].parent=HT[s2].parent=i;
HT[i].lchild=s1;//i号单元的左右孩子分别是s1,s2
HT[i].rchild=s2;
HT[i].weight=HT[s1].weight+HT[s2].weight;//i的权值是s1与s2的和
}
HC=(HuffmanCode)malloc((n+1)*sizeof(char *));
cd=(char *)malloc(n*sizeof(char));//分配求编码的工作空间
cd[n-1]='\0'; //编码结束符
for(i=1;i<=n;i++)
{
start=n-1;
for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)
if(HT[f].lchild==c) //c是其双亲的左孩子
cd[--start]='0'; //由叶子向根赋值0
else
cd[--start]='1'; //由叶子向根赋值1
HC[i]=(char*)malloc((n-start)*sizeof(char)); //为第i个字符编码分配空间
strcpy(HC[i],&cd[start]);
}
free(cd);//释放工作空间
}
int main()
{
HuffmanTree HT;
HuffmanCode HC;
int *w,n,i;
printf("请输入权值的个数:");
scanf("%d",&n);
w=(int *)malloc(n*sizeof(int ));
printf("请依次输入%d个权值",n);
for(int i=0;i<=n-1;i++)
scanf("%d",w+i); //依次输入权值
HuffmanCoding(HT,HC,w,n); //根据w所存的n个权值构造赫夫曼树HT,n个赫夫曼编码存于HC
for(i=1;i<=n;i++)
puts(HC[i]);
return 0;
}
赫夫曼编码
最新推荐文章于 2024-07-26 10:34:47 发布