1、基本介绍
(1)赫夫曼编码也翻译为 哈夫曼编码(Huffman Coding),又称霍夫曼编码,是一种编码方式。属于一种程序算法。赫夫曼编码是赫夫曼树在电信通讯中经典的应用之一。
(2)赫夫曼编码被广泛地应用于数据文件压缩。其压缩率通常在20%~90%之间。
(3)赫夫曼编码是可变字长编码(VLC)的一种。Huffman于1952年提出一种编码方式,称为最佳编码。
2、原理剖析
(1)通信领域中信息的处理方式1——定长编码
(2)通信领域中信息处理方式2——变长编码
(3)通信领域中信息的处理方式3——赫夫曼编码
步骤:
1)从小到大进行排序,每一个数据都是一个节点,每个节点都可以看作一个最简单的二叉树
2)取出根节点权值最小的二叉树
3)组成一个新的二叉树,该新的二叉树的根节点权值是前面两颗二叉树根节点的权值和
4)再将这颗新的二叉树,以根节点的权值大小再次排序,不断重复1-2-3-4的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树。
5)根据赫夫曼树,给各个字符规定编码(前缀编码),向左的路径为0向右的路径为1,编码如下:
o: 1000 u: 10010 d: 100110 y:100111 i: 101 a: 101 k: 1110 e: 1111 j: 0000 v:0001 l: 001 : 01
6) 按照上面的赫夫曼编码,我们的"i like like like java do you like a java" 字符串对应的编码为(注意我们这里使用的无损压缩):
10111101111010011011110111100101011110111101000011000011100110011110000110 10101001 0111100010010010011011110111 01i100100001100001110 通过赫夫曼编码处理 长度为133
7)原来长度为359,压缩了(359-133) / 359 = 62.9%
8)此编码满足前缀编码,即字符的编码都不能是其他字符编码的前缀。不会造成匹配的多义性。赫夫曼编码是无损处理方案。
3. 赫夫曼编码压缩文件注意事项
1、如果文件本身是压缩处理过的,那么使用赫夫曼编码再压缩效率不会有明显的变化,比如视频、PPT等文件【举例:压缩一个ppt文件】
2、赫夫曼编码是按照字节来处理的,因此可以处理所有的文件(二进制文件、文本文件)
3、如果一个文件中的内容,重复的数据不多,压缩的效果也不会很明显。
4. 最佳实践
1、数据压缩(创建赫夫曼树)
2、数据压缩(生成赫夫曼编码和赫夫曼编码后的数据)
3、数据解压(使用赫夫曼编码解码)
4、文件压缩
5、文件解压
import java.io.*;
import java.util.*;
public class HuffmanCode {
public static void main(String[] args) {
// String content = "i like like like java do you like a java";
// byte[] contentByte = content.getBytes();
// System.out.println(contentByte.length);
// byte[] huffmanCodeBytes = huffmanZip(contentByte);
// System.out.println("压缩后的结果是:" + Arrays.toString(huffmanCodeBytes));
// byte[] decode = decode(huffmanCodes, huffmanCodeBytes);
// System.out.println("原来的字符串 = " + new String(decode));
// 测试压缩文件
// String srcFile = "E://hh.bmp";
// String dstFile = "E://hh.zip";
// zipFile(srcFile,dstFile);
// System.out.println("压缩好了");
// 测试解压文件
String zipFile = "E://hh.zip";
String dstFile2 = "E://hh2.bmp";
unZipFile(zipFile, dstFile2);
System.out.println("解压完了");
}
/**
* 编写一个方法,完成对压缩文件的解压
* @param zipFile
* @param dstFile
*/
public static void unZipFile(String zipFile, String dstFile) {
// 定义一个文件输入流
InputStream is = null;
// 定义一个对象输入流
ObjectInputStream ois = null;
// 定义文件输出流
OutputStream os = null;
try {
// 创建文件输入流
is = new FileInputStream(zipFile);
// 创建一个和 is 关联的对象输入流
ois = new ObjectInputStream(is);
// 读取byte数组 huffmanBytes
byte[] huffmanBytes = (byte[]) ois.readObject();
// 读取赫夫曼编码表
Map<Byte, String> huffmanCodes = (Map<Byte, String>) ois.readObject();
// 解码
byte[] bytes = decode(huffmanCodes, huffmanBytes);
// 将 bytes 数组写入到目标文件
os = new FileOutputStream(dstFile);
// 写数据到 dstFile 文件
os.write(bytes);
} catch (Exception e) {
System.out.println(e.getMessage());
} finally {
try {
os.close();
ois.close();
is.close();
} catch (IOException e) {
System.out.println(e.getMessage());
}
}
}
/**
*
* @param srcFile 你传入的希望压缩的文件的全路径
* @param dstFile 我们压缩后将压缩文件放到哪个目录
*/
public static void zipFile(String srcFile, String dstFile) {
// 创建文件输出流
FileOutputStream os = null;
ObjectOutputStream oos = null;
// 创建输入流
FileInputStream is = null;
try {
// 创建文件的输入流
is = new FileInputStream(srcFile);
// 创建一个和源文件大小一样的byte[]
byte[] b = new byte[is.available()];
// 读取文件
is.read(b);
// 直接对源文件压缩
byte[] huffmanBytes = huffmanZip(b);
// 创建文件输出流,存放压缩文件
os = new FileOutputStream(dstFile);
// 创建一个和文件输出流关联的ObjectOutputStream
oos = new ObjectOutputStream(os);
// 把赫夫曼编码后的字节数组写入压缩文件
oos.writeObject(huffmanBytes);
// 这里我们以对象流的方式写入 赫夫曼编码,是为了我们以后恢复文件时使用
// 注意一定要把赫夫曼编码 写入压缩文件
oos.writeObject(huffmanCodes);
} catch (Exception e) {
System.out.println(e.getMessage());
} finally {
try {
is.close();
oos.close();
os.close();
} catch (Exception e) {
System.out.println(e.getMessage());
}
}
}
// 编写一个方法,完成对压缩数据的解码
private static byte[] decode(Map<Byte, String> huffmanCodes, byte[] huffmanBytes) {
// 1、先得到huffmanBytes 对应的二进制的字符串。 形式如 110101000111..
StringBuilder stringBuilder = new StringBuilder();
// 将byte数组转成二进制的字符串
for (int i = 0; i < huffmanBytes.length; i++) {
byte b = huffmanBytes[i];
// 判断是不是最后一个字节
boolean flag = (i == huffmanBytes.length - 1);
stringBuilder.append(byteToBitString(!flag, b));
}
// 把字符串安装指定的赫夫曼编码进行解码
// 把赫夫曼编码表进行调换,因为反向查询 a->100 100->a
HashMap<String, Byte> map = new HashMap<>();
for (Map.Entry<Byte, String> entry : huffmanCodes.entrySet()) {
map.put(entry.getValue(), entry.getKey());
}
// 创建要给集合,存放byte
List<Byte> list = new ArrayList<>();
// i可以理解成就是索引,扫描stringBuilder
for (int i = 0; i < stringBuilder.length();) {
int count = 1;// 小的计数器
boolean flag = true;
Byte b = null;
while (flag) {
String key = stringBuilder.substring(i, i + count);// i 不动,让count移动,直到匹配到一个字符
b = map.get(key);
if(b == null) {// 如果没有匹配到
count++;
} else {
// 匹配到
flag = false;
}
}
list.add(b);
i += count;// i 直接移动到count
}
// 当for循环结束后,我们list中就存放了所有的字符
// 把list 中的数据放入到byte[] 并返回
byte[] b = new byte[list.size()];
for (int i = 0; i < b.length; i++) {
b[i] = list.get(i);
}
return b;
}
// 完成数据的解压
/**
* 将一个byte转成一个二进制的字符串
* @param flag 标志是否需要补高位
* @param b 传入的byte
* @return 是该b 对应的二进制的字符串(注意是按照补码返回)
*/
private static String byteToBitString(boolean flag, byte b) {
int temp = b;// 将 b 转成 int
// 如果是正数我们还需要补高位
if(flag) {
temp |= 256;
}
String str = Integer.toBinaryString(temp);// 返回的是temp对应的二进制的补码
if(flag) {
return str.substring(str.length() - 8);
}
return str;
}
public static byte[] huffmanZip(byte[] bytes) {
List<Node> nodes = getNodes(bytes);
// 根据nodes 创建HuffmanTree
Node huffmanTreeRoot = creatHuffmanTree(nodes);
// 获取对应的赫夫曼编码
Map<Byte, String> huffmanCodes = getCodes(huffmanTreeRoot);
// 根据生成的赫夫曼编码,压缩得到压缩后的赫夫曼编码字节数组
byte[] huffmanByteCodes = zip(bytes, huffmanCodes);
return huffmanByteCodes;
}
// 编写一个方法,将字符串对应的byte[]数组,通过生成的赫夫曼编码表,返回一个赫夫曼编码 压缩后的byte[]
public static byte[] zip(byte[] bytes, Map<Byte, String> huffmanCodes) {
// 1、利用huffmanCodes 将bytes 转成 赫夫曼编码对应的字符串
StringBuilder stringBuilder = new StringBuilder();
// 遍历bytes 数组
for (byte b : bytes) {
stringBuilder.append(huffmanCodes.get(b));
}
// System.out.println("测试 stringBuilder =" + stringBuilder.toString());
// 统计返回 byte[] huffmanCodeBytes 长度
// int len = (stringBuilder.length() + 7) / 8;
int len = 0;
if(stringBuilder.length() % 8 == 0) {
len = stringBuilder.length() / 8;
} else {
len = stringBuilder.length() / 8 + 1;
}
// 创建 存储压缩后的bytes数组
byte[] huffmanCodeBytes = new byte[len];
int index = 0;// 记录是第几个byte
for (int i = 0; i < stringBuilder.length(); i += 8) {// 因为是每8位对应一个byte 所以步长 +8
String strByte;
if(i+8 > stringBuilder.length()) {
strByte = stringBuilder.substring(i);
} else {
strByte = stringBuilder.substring(i, i + 8);
}
// 将strByte 转成一个byte, 放入到huffmanCodeBytes
huffmanCodeBytes[index] = (byte) Integer.parseInt(strByte, 2);
index++;
}
return huffmanCodeBytes;
}
private static void preOrder(Node root) {
if(root != null) {
root.preOrder();
} else {
System.out.println("赫夫曼树为空!");
}
}
static Map<Byte, String> huffmanCodes =new HashMap<>();
static StringBuilder stringBuilder =new StringBuilder();
private static Map<Byte, String> getCodes(Node root) {
if(root == null) {
return null;
}
// 处理root的左子树
getCodes(root.left, "0", stringBuilder);
// 处理root的右子树
getCodes(root.right, "1", stringBuilder);
return huffmanCodes;
}
/**
* 功能:将传入的node节点的所有
* @param node
* @param code
* @param stringBuilder
*/
private static void getCodes(Node node, String code, StringBuilder stringBuilder) {
StringBuilder stringBuilder2 = new StringBuilder(stringBuilder);
stringBuilder2.append(code);
if(node != null) {
if(node.data == null) {// 非叶子结点
// 递归处理
// 左递归
getCodes(node.left, "0", stringBuilder2);
// 右递归
getCodes(node.right, "1", stringBuilder2);
} else {
huffmanCodes.put(node.data, stringBuilder2.toString());
}
}
}
private static List<Node> getNodes(byte[] bytes) {
// 1、创建一个ArrayList
ArrayList<Node> nodes = new ArrayList<>();
// 2、遍历bytes,统计每一个byte出现的次数 -> map[key,value]
HashMap<Byte, Integer> counts = new HashMap<>();
for (byte b : bytes) {
Integer count = counts.get(b);
if(count == null) {
counts.put(b,1);
} else {
counts.put(b, count++);
}
}
// 把每一个键值对转成一个Node,并加入到nodes集合
for (Map.Entry<Byte, Integer> entry : counts.entrySet()) {
nodes.add(new Node(entry.getKey(), entry.getValue()));
}
return nodes;
}
// 通过List 创建对应的赫夫曼树
private static Node creatHuffmanTree(List<Node> nodes) {
while (nodes.size() > 1) {
Collections.sort(nodes);
Node leftNode = nodes.get(0);
Node rightNode = nodes.get(1);
Node parent = new Node(null, leftNode.weight + rightNode.weight);
parent.left = leftNode;
parent.right = rightNode;
nodes.remove(leftNode);
nodes.remove(rightNode);
nodes.add(parent);
}
return nodes.get(0);
}
}
class Node implements Comparable<Node>{
Byte data;// 存放数据(字符本身)。比如'a' => 97 ' ' => 32
int weight;// 权值,表示字符出现的次数
Node left;
Node right;
public Node(Byte data, int weight) {
this.data = data;
this.weight = weight;
}
@Override
public int compareTo(Node o) {
// 从小到大排序
return this.weight - o.weight;
}
@Override
public String toString() {
return "Node{" +
"data=" + data +
", weight=" + weight +
'}';
}
// 前序遍历
public void preOrder() {
System.out.println(this);
if(this.left != null) {
this.left.preOrder();
}
if(this.right != null) {
this.right.preOrder();
}
}
}