DP URAL - 1009 URAL - 1012 URAL - 1013
题目链接:https://cn.vjudge.net/contest/190727#problem/B(简单)
https://cn.vjudge.net/contest/190727#problem/H(大数)
https://cn.vjudge.net/contest/190727#problem/K(矩阵快速幂)
题目大意:N位K进制的数,不允许出现连续的两个0,问这种数有多少个。2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.
- 1010230 is a valid 7-digit number;
- 1000198 is not a valid number;
0001235 is not a 7-digit number, it is a 4-digit number.
input :2 10
output 90 // 10-99 共90个
题目分析:这个题目,可以用数位dp来做,也可以用简单的dp来做。数位dp的做法不写了。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 50;
typedef long long ll;
ll dp[maxn][2];
//dp[i][j] i表示第i位,j有两种状态,一种是为0,表示当前位放0;另一种是为1, 表示当前位不放置0(即放置1~k-1)
int main()
{
int n, k;
cin >> n >> k;
dp[1][0] = 0;
dp[1][1] = k - 1;
for(int i = 2; i <= n; i++) {
dp[i][0] = dp[i - 1][1];
dp[i][1] = (dp[i - 1][0] + dp[i - 1][1]) * (k - 1);
}
printf("%lld\n", dp[n][0] + dp[n][1]);
}
这个是一开始自己推的,后来看了别人的发现直接用一维数组即可。
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e3 + 100;
int dp[maxn];
int main()
{
int n, k;
cin >> n >> k;
dp[1] = k - 1;
dp[2] = (k - 1) * k;
for(int i = 3; i <= n; i++)
dp[i] = (k - 1) * (dp[i - 1] + dp[i - 2]);
printf("%d\n", dp[n]);
}
//dp[i - 1] * (k - 1) 是说当前位不放零,有k - 1个数(1~k-1)可以放,因为不放零,所以它的前一位放什么都无所谓了,直接dp[i - 1] * (k - 1);
//dp[i - 2] * (k - 1)是说当前位放零,那么它的前一位必定不是零,可以是(1~k-1)有k-1中放法,乘以它的前前一位的放法数dp[j - 2]
//虽然都是乘以k - 1, 但是意义却不一样。
第二个就是数据范围变大。2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 1800.涉及大数,需要用Java
//package test;
import java.io.*;
import java.util.*;
import java.math.*;
public class Main{
static BigInteger[][] dp = new BigInteger[2010][20];
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int n = cin.nextInt();
int K = cin.nextInt();
int i, j, k;
for(i = 0; i < 2010; i++)
{
for(j = 0; j < 20; j++)
{
dp[i][j] = new BigInteger("0");
}
}
if(n == 1) dp[1][0] = new BigInteger("1");
for(i = 1; i < K; i++)
dp[1][i] = new BigInteger("1");
for(i = 2; i <= n; i++)
{
for(j = 0; j < K; j++)
{
for(k = 0; k < K; k++)
{
if(j == 0 && k == 0) continue;
dp[i][j] = dp[i][j].add(dp[i - 1][k]);
}
}
}
BigInteger sum = BigInteger.ZERO;
for(i = 0; i < K; i++)
sum = sum.add(dp[n][i]);
System.out.println(sum);
}
}
这种做法是自己一开始想的做法,原理跟之前那个一样。
第三种:2 ≤ N, K, M ≤ 1e18. 数据范围进一步扩大,需要用矩阵快速幂,我的代码是在第一个问题的一维的代码上写的矩阵快速幂。
import java.math.BigInteger;
import java.util.Scanner;
class Matrix {
BigInteger dp[][] = new BigInteger [3][3];
BigInteger mod;
public Matrix(Boolean flag, BigInteger _mod) {
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
dp[i][j] = BigInteger.ZERO;
if(flag) {
dp[0][0] = dp[1][1] = BigInteger.ONE;
}
mod = _mod;
}
Matrix mul (Matrix b) {
Matrix a = new Matrix (false, mod);
for(int i = 0; i < 2; i++) {
for(int j = 0; j < 2; j++) {
for(int k = 0; k < 2; k++) {
a.dp[i][j] = a.dp[i][j].add(dp[i][k].multiply(b.dp[k][j]).mod(mod)).mod(mod);
// System.out.println(a.dp[i][j] + "###");
}
}
}
return a;
}
Matrix pow_mod(long b) {
Matrix ans = new Matrix(true, mod);
Matrix a = this;
while(b != 0) {
if((b % 2) != 0) {
ans = ans.mul(a);
}
a = a.mul(a);
b >>= 1;
}
return ans;
}
}
public class Main{
static Scanner cin = new Scanner(System.in);
public static void main(String[] args) {
long n = cin.nextLong();
BigInteger k = cin.nextBigInteger();
BigInteger mod = cin.nextBigInteger();
Matrix a = new Matrix(false, mod);
a.dp[0][0] = k.subtract(BigInteger.ONE);
a.dp[0][1] = k.subtract(BigInteger.ONE);
a.dp[1][0] = BigInteger.ONE;
a.dp[1][1] = BigInteger.ZERO;
a = a.pow_mod(n - 1);
BigInteger ans1 = k.subtract(BigInteger.ONE).multiply(a.dp[0][0]).mod(mod);
BigInteger ans2 = k.subtract(BigInteger.ONE).multiply(a.dp[1][0]).mod(mod);
BigInteger ans = ans1.add(ans2).mod(mod);
System.out.println(ans);
}
}