题目链接
题目大意
一棵树,n个节点,给出边与边的连接情况以及权值。问有多少条路径的长度<=m。
样例
5 4
1 2 3
1 3 1
1 4 2
3 5 1
8
思路
选定 一个根,我们会发现所有的路径分两种情况:一是经过这个根,二是不经过这个根。对于第二种情况,我们会发现它是第一种情况的子问题。
我们只要想出第一种情况怎么做,然后递归处理第二种情况就可以了。对于我们选定的这个根root,我们求出所有点到它的距离dist[],然后把这些距离排序,问题就变成了在这个序列里面选两个值a,b,使得a + b <= m,有多少种。(想一想怎么做),其实我们发现扫一遍就能找到有多少种。
但是这样就算多了很多。因为我们要的只是经过这个根的,还要减去不经过它的。这个只要减去经过它子树的即可。
这样我们就需要枚举每一个根然后去计算。
为了防止超时,我们每次用的根都是重心。
时间复杂度是nlognlogn(没听懂为什么)
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn = 1e6 + 100;
struct node {
int v, w;
};
vector<node> Edge[maxn];
int sonNum[maxn], sonMax[maxn], dist[maxn], Node[maxn];
int Min, n, m, allNode, id;
bool vis[maxn];
//vis 标记访问没访问过
//sonNum 子树节点的数量 sonMax 子树中最多节点的节点个数
//dist 到当前根的距离
//Node 用来储存所有距离点的数组
//id重心
void dfs(int root, int pre) { //求重心
sonNum[root] = 1;
sonMax[root] = 0;
for(int i = 0; i < Edge[root].size(); i++) {
int to = Edge[root][i].v;
if(to == pre || vis[to]) continue;
dfs(to, root);
sonNum[root] += sonNum[to];
sonMax[root] = max(sonMax[root], sonNum[to]);
}
sonMax[root] = max(sonMax[root], allNode - sonNum[root]);
if(sonMax[id] > sonMax[root]) id = root;
}
int ans, cnt;
void GetDist(int root, int pre, int val) {
dist[root] = val; //这里很重要 仔细想想
for(int i = 0; i < Edge[root].size(); i++) {
int to = Edge[root][i].v, w = Edge[root][i].w;
if(to == pre || vis[to]) continue;
GetDist(to, root, w + val);
}
Node[cnt++] = dist[root];
}
int cal(int root, int val) {
cnt = 0;
GetDist(root, 0, val);
sort(Node, Node + cnt);
int ans = 0;
for(int i = 0, j = cnt - 1; i < j; ) {
if(Node[i] + Node[j] <= m) {
ans += j - i;
i++;
}
else j--;
}
return ans;
}
void solve(int root) {
ans += cal(root, 0);
vis[root] = true;
for(int i = 0; i < Edge[root].size(); i++) {
int to = Edge[root][i].v, w = Edge[root][i].w;
if(vis[to]) continue;
ans -= cal(to, w);
sonMax[0] = allNode = sonNum[to];
dfs(to, id = 0);
solve(id);
}
}
int main()
{
while(~scanf("%d %d", &n, &m) && (n || m)) {
memset(vis, false, sizeof(vis));
for(int i = 0; i <= n; i++) Edge[i].clear();
for(int i = 1; i < n; i++) {
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
Edge[u].push_back((node) {v, w});
Edge[v].push_back((node) {u, w});
}
sonMax[0] = allNode = n;
dfs(1, id = 0);
ans = 0;
solve(id);
printf("%d\n", ans);
}
}