POJ-1240(分治,递归降解)

该博客探讨了如何使用分治和递归策略解决POJ-1240问题,该问题涉及根据给定的m元树前序和后序遍历来计算可能的树结构数量。通过分析前序遍历的特性,博主提出将问题分解为子树,并应用组合数学公式计算可能性,最终得出解决方案。
摘要由CSDN通过智能技术生成

题目:http://poj.org/problem?id=1240

题目的意思即,给定一棵m元树的前序和后序遍历,问你一共有多少颗m元树有这样的性质。

乍一看好像没什么头绪,由于题目中也提到了由中序和后序求前序,想到是不是同样能用分治法。

我们知道前序遍历的开头是这棵树的树根,其余部分是子树,如果用f(m, tree)来表示根据m元tree的前序和后序遍历能构造出多少种树,设子树有n棵,则

f(m, tree) = f(m, subtree(1)) * f(m, subtree(2)) * ... * f(m, subtree(n)) * C(m, n)

子树种类相乘是根据组合数学的乘法公式,最后乘以C(m, n)则是因为m元中选择n个位置依次放入subtree(1), subtree(2), ..., subtree(n),都能保证同样的遍历结果。

边界条件即单节点树只有一种。


#include <iostream>
#include <string>
using namespace std;

typedef long long LL
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值