让你的AI模型更“耐打”:鲁棒性测试入门指南

1、引言

        模型算法测试在当前测试领域还不是很完善,而且也是属于高端的测试技术,很多测试同学也不是很了解。

  所以,我就准备让模型算法测试走进测试领域,让更多的测试同学知道模型算法测试,了解模型算法测试,掌握模型算法测试,及最后能把模型算法测试应用于实际工作中,这也是我在推出模型算法测试系列文章的初衷。

  因为模型算法测试相对于传统测试,还是有很高的技术要求,所以,在读这些模型算法文章中,如果有些困哪,也不要放弃或者灰心, 只要跟着我的脚步,沉下心来慢慢学习,再加上自己对编码、人工智能领域涉及到模型算法相关知识的储备及掌握, 我相信你也会跟我一样,完全掌握模型算法并应用于实际工作中。

  这里再说一下,文章内容是结合我的企业中实际工作应用的内容,所以,如果有一些如,方法,代码等,你觉得不太适合你的企业,可以做一点适当的调整。

  当然,我也会站在大多数的企业角度,争取达到让你开箱即用的效果。

  好了,闲言少叙,书说简短,开始今天这篇模型算法测试之:鲁棒性测试

  2、鲁棒性测试概述

  说到鲁棒性测试,其实就是健壮性测试。

  为什么这么说呢, 我分别在传统测试 和模型算法测试中,介绍鲁棒性测试,你就知道了:

  ·在传统测试中,鲁棒性测试就是关注软件系统在异常情况下的行为,响应,动作等,这是通过模拟错误输入、环境变化、系统故障等情况来验证的。

  ·在模型算法测试中,鲁棒性测试 则是在不同的噪声条件、数据缺失和数据异常等情况下,来对模型算法进行评估和验证。

  所以,你看这两个都是验证系统或者模型的稳定性和可靠性。

  看到这里,是不是就知道了,为什么要做鲁棒性测试了。 

  为了便于理解, 这里我也总结了几点:

  1)数据不完美:作为技术人,我们必须知道应用中数据的异常情况,如噪声、缺失值、异常值等,这就需要鲁棒性测试来评估模型在不理想情况下的表现;

  2)模型稳定性:通过鲁棒性测试,确保模型在面对不同数据扰动时仍具有稳定的预测性能;

  3)模型可靠性:通过鲁棒性测试,提升模型在实际场景中的可靠性,防止模型因数据问题表现失常;

  3、鲁棒性测试方法

  关于模型算法鲁棒性测试方法包含多种,这里我就介绍常用的方法:

  1)噪声注入:通过向数据集中添加不同类型的噪声(如高斯噪声、椒盐噪声等),评估模型在噪声数据下的表现,这种方法也可以测试模型对数据间不确定性的抗干扰能力;

  2)模拟数据缺失:通过随机删除数据集中的部分数据(重要的数据),模拟在数据缺失情况下,评估模型的表现,主要测试模型对不完美数据的抗干扰能力;

  3)异常值处理:通过引入异常值并评估模型在其存在条件下的表现,检测模型对异常数据的处理能力,可以测试模型在数据出现异常时的稳定性;

  4)数据分布变化:通过引入分布不同的数据集(主要是测试数据集)来测试模型的泛化能力和对数据分布变化的适应度;

  5)降维:通过对特征进行选择或降维处理,测试模型在数据维度降低时的表现;

  这里说一下,常见的降维技术:主成分分析、线性判别分析、核PCA、t-SNE等。

  5-1)主成分分析:即PCA,通过找到数据集的主成分,将数据投影到一个较低维的子空间中;

  5-2) 线性判别分析:即LDA,通过最大化类间方差与类内方差的比值来找到最优特征子空间;

  5-3) 核PCA:一种非线性降维方法,通过核技巧将数据映射到高维空间,再进行主成分分析(PCA);

  5-4)t-SNE:一种常用于数据可视化的降维技术,特别适用于高维数据的非线性降维。

  6)交叉验证:模型训练常用的方法,将数据集(训练集/验证集/测试集)分割多个子集,用不同的子集训练和测试模型,来评估模型的稳定性和泛化能力。

  这里说明一下,不仅仅有交叉验证,还有K-折,S-折等,我会在后面的模型测试方法中详细拓展。

  同样,便于你对测试方法的理解, 我也展示工作中的一些代码示例。

  示例一: 高斯噪声注入

  示例二: 模拟数据缺失

  通过以上两个实例,希望能提升你对噪声注入和 模拟数据缺失两种测试方法的理解。

  4、鲁棒性测试流程

  鲁棒性测试在模型算法测试流程,与传统测试或模型算法模糊测试、蜕变测试等流程大体一致,但是,也会有些区别,这里我就针对鲁棒性测试,进行拓展与介绍。

  鲁棒性测试流程,同样包含:测试规划、数据准备、模型测试、结果分析。

  但是这里我要详细介绍一些不一样的内容。

  1)测试规划:

  测试方法选定:噪声注入、数据缺失模拟、对抗样本等;

  测试数据准备:与实际测试场景相符合的数据,记住,这一点很重要;

  选定评估指标:根据不同的模型类型,设定不同的评估指标,如分类模型、聚类模型等等,评估指标还是有差异的。

  2)数据准备:

  准备不同类型、不同维度的数据,如:

  生成或引入噪声:在测试数据集中引入噪声;

  模拟缺失数据:通过随机删除等方式模拟数据缺失情况;

  对抗样本生成:使用对抗样本生成技术合成对抗样本;

  3) 模型测试:

  针对上面准备数据的维度,对应进行测试,如:

  噪声注入测试:在引入噪声数据集上测试模型性能;

  缺失值测试:在缺失数据集上测试模型表现;

  对抗样本测试:在对抗样本集合上评估模型鲁棒性;

  4模型结果评估与分析:

  针对不同结果进行分析、不限于:比对分析、优化方案、改进措施等。

  5) 报告编写

  基于上面流程和测试结果,编写测试报告。

  在上面5点流程中,我们需要重点关注 方案设定、数据准备和模型测试,因为这直接影响到模型的结果。

  5、总结

  鲁棒性测试是模型算法测试的重要组成部分,通过在不同数据条件下对模型进行全面评估,确保其在实际应用场景中的可靠性和稳定性。

  当然, 通过这篇,也希望你不仅仅能知道什么是鲁棒性测试, 鲁棒性测试在模型服务中的应用,以及鲁棒性测试的流程及方法,同时,也希望你能通过在项目中的实际应用,来提升与优化更符合你的企业的模型算法的鲁棒性测试。

文末了:

      可以到我的个人号:atstudy-js,可以免费领取一份10G软件测试工程师面试宝典文档资料。同时我邀请你进入我们的软件测试学习交流平台,大家可以一起探讨交流软件测试,共同学习软件测试技术、面试等软件测试方方面面,了解测试行业的最新趋势,助你快速进阶Python自动化测试/测试开发,稳住当前职位同时走向高薪之路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值