【数论】素数(一):基本概念、性质、猜想、定理

我的数论-素数部分博客共5part:
基本概念、性质、猜想、定理
素数筛法(埃式筛、欧拉筛、区间筛)
素数判断法(朴素法、模6法、Rabin-Miller及改进)
数的分解(Pollard-rho)
梅森素数(Lucas_Lehmer判定法)

基本概念与性质

  • > 1 >1 >1,正整数,除了1和本身不能被其他数整除
  • d > 1 , d ∈ N ∗ , p 是 素 数 , d ∣ p ⇒ d = p d>1,d\in N^*,p是素数,d|p\Rightarrow d=p d>1,dN,pdpd=p
  • p p p 是素数, p ∣ a b ⇒ p ∣ a o r p ∣ b p|ab\Rightarrow p|a\quad or\quad p|b pabpaorpb
  • 素数无穷多
  • 每个大于1的正整数都有一个素因子
  • n n n 是合数,则必有 ≤ n \leq \sqrt n n 的素因子

定理与猜想

猜想

  • 伯特兰猜想:任意正整数 n n n (大于1),存在素数 p p p n < p < 2 n n<p<2n n<p<2n
  • 孪生素数猜想:存在无穷多的 p p p p + 2 p+2 p+2 的素数对
  • 哥德巴赫猜想:每个大于 2 2 2 的正偶数可以写成两个素数之和

素数定理

  • 定义 π ( x ) \pi(x) π(x) 表示小于 x x x 的素数个数, π ( x ) = x ln ⁡ x \pi(x)=\frac{x}{\ln x} π(x)=lnxx

  • 推论:定义 p n p_n pn 为第 n n n 个素数, p n ∼ n ln ⁡ n p_n \sim n\ln n pnnlnn

算术基本定理

  • 定理:每个大于 1 1 1 的正整数 n n n 都可以被唯一的写成素数的乘积 n = p 1 α 1 p 2 α 2 ⋯ p k α k , p 1 < p 2 < ⋯ < p k n={p_1}^{\alpha_1}{p_2}^{\alpha_2}\cdots{p_k}^{\alpha_k},p_1<p_2<\cdots<p_k n=p1α1p2α2pkαk,p1<p2<<pk 且是素数, α 1 , α 2 , ⋯ α k \alpha_1,\alpha_2,\cdots \alpha_k α1,α2,αk 是正整数。

  • d ( n ) d(n) d(n) n n n 的正因子个数, ϕ ( n ) \phi(n) ϕ(n) n n n 的所有因子之和,则有
    d ( n ) = ( α 1 + 1 ) ( α 2 + 1 ) ⋯ ( α k + 1 ) ϕ ( n ) = p 1 α 1 + 1 − 1 p 1 − 1 ⋅ p 2 α 2 + 1 − 1 p 2 − 1 ⋯ p k α k + 1 − 1 p k − 1 d(n)=(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_k+1)\\ \phi(n)=\frac{{p_1}^{\alpha_1+1}-1}{p_1-1}·\frac{{p_2}^{\alpha_2+1}-1}{p_2-1}\cdots\frac{{p_k}^{\alpha_k+1}-1}{p_k-1} d(n)=(α1+1)(α2+1)(αk+1)ϕ(n)=p11p1α1+11p21p2α2+11pk1pkαk+11

  • a = ρ 1 r 1 ρ 2 r 2 ⋯ ρ k r k , b = ρ 1 s 1 ρ 2 s 2 ⋯ ρ k s k a={\rho_1}^{r_1}{\rho_2}^{r_2}\cdots {\rho_k}^{r_k},b={\rho_1}^{s_1}{\rho_2}^{s_2}\cdots {\rho_k}^{s_k} a=ρ1r1ρ2r2ρkrk,b=ρ1s1ρ2s2ρksk,则
    gcd ⁡ ( a , b ) = ρ 1 min ⁡ ( r 1 , s 1 ) ρ 2 min ⁡ ( r 2 , s 2 ) ⋯ ρ k min ⁡ ( r k , s k ) lcm ( a , b ) = ρ 1 max ⁡ ( r 1 , s 1 ) ρ 2 max ⁡ ( r 2 , s 2 ) ⋯ ρ k max ⁡ ( r k , s k ) \gcd(a,b)={\rho_1}^{\min(r_1,s_1)}{\rho_2}^{\min(r_2,s_2)}\cdots {\rho_k}^{\min(r_k,s_k)}\\ \text{lcm}(a,b)={\rho_1}^{\max(r_1,s_1)}{\rho_2}^{\max(r_2,s_2)}\cdots {\rho_k}^{\max(r_k,s_k)} gcd(a,b)=ρ1min(r1,s1)ρ2min(r2,s2)ρkmin(rk,sk)lcm(a,b)=ρ1max(r1,s1)ρ2max(r2,s2)ρkmax(rk,sk)

  • n ! n! n! 的素因子分解中素数 p p p 的幂为 [ n p ] + [ n p 2 ] + ⋯ [\frac{n}{p}]+[\frac{n}{p^2}]+\cdots [pn]+[p2n]+

威尔逊定理

  • p p p 是素数,则 ( p − 1 ) ! ≡ − 1 (   m o d   p ) (p-1) ! \equiv-1(\bmod p) (p1)!1(modp)

费马小定理

  • 假如 p p p 是萦数, 且 ( a , p ) = 1 (a, p)=1 (a,p)=1, 那么 a p − 1 ≡ 1 (   m o d   p ) a^{p-1} \equiv 1(\bmod p) ap11(modp)

  • 推论:若 p p p 是素数且 a a a 是正整数,那么 a p ≡ a (   m o d   p ) a^{p} \equiv a(\bmod p) apa(modp)

欧拉定理

  • 欧拉函数 φ ( n ) \varphi(n) φ(n) :不超过 n n n 且与 n n n 互素的正整数的个数, n n n 是一个正整数
  • m m m 是一正整数, a a a 是一个整数且 ( a , m ) = 1 (a, m)=1 (a,m)=1, 那么 a φ ( m ) ≡ a^{\varphi(m)} \equiv aφ(m) 1 (   m o d   m ) 1(\bmod m) 1(modm).
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值