【图论】【基本概念】

基本概念

  • 顶点 (Vertex or Node) 构成点集 (Vertex set)

  • 边(Edge) 构成边集 (Edge set)

    • 常记作 ( u , v ) (u,v) (u,v) u , v u,v u,v 称为 e e e端点 (Endpoint)
    • 有向边 (Directed edge)弧 (Arc) ( u , v ) (u,v) (u,v) 有序,有时也写作 u → v u \to v uv 。设 e = u → v e=u \to v e=uv,则此时 u u u 称为 e e e起点 (Tail) v v v 称为 e e e终点 (Head),并称 u u u v v v 的直接前驱, v v v u u u 的直接后继。
    • 无向边 (Undirected edge)边 (Edge) ( u , v ) (u,v) (u,v) 无序。
  • 图 (Graph) 是一个二元组$G=(V(G), E(G)) $ ,其中 V ( G ) V(G) V(G) 是非空点集 (Vertex set) E ( G ) E(G) E(G)边集 (Edge set)

    • 常记作 G = ( V , E ) G=(V,E) G=(V,E)

    • G G G 的点数 ∣ V ( G ) ∣ |V(G)| V(G) 也被称作图 G G G阶 (Order)

    • V , E V,E V,E 都是有限集合时,称 G G G有限图;当 V V V E E E 是无限集合时,称 G G G无限图

    • 有向图 (Directed graph) E E E 中均为有向边。

      无向图 (Undirected graph) E E E 中均为无向边。

      混合图 (Mixed graph) E E E 中既有有向边也有无向边。

    • 赋权图:每条边都有权值。其中边权全是正的为正权图

    • 稀疏图 (Sparse graph):边很多,**稠密图 (Dense graph)**刚好相反。这个一般用于讨论时间复杂度为 O ( ∣ V ∣ 2 ) O(|V|^2) O(V2) 的算法与 O ( ∣ E ∣ ) O(|E|) O(E) 的算法的效率差异(稀疏图优先选择后者)。

    • 自环 (Loop) ∃ e = ( u , v ) ∈ E , 且 u = v \exists e=(u,v)\in E,且u=v e=(u,v)E,u=v,则 e e e 称作自环。

      重边 (Multiple edge):若 E E E 中存在两个完全相同的边,则它们被称作(一组)重边。

    • 简单图 (Simple graph):若一个图中没有自环和重边,它被称为简单图。否则为多重图 (Multigraph)

    • 补图:对于无向图

    • 反图

  • 图中的点

    • 对于两顶点 u u u v v v ,若存在边 ( u , v ) (u,v) (u,v) ,则称 u u u v v v相邻的 (Adjacent)

      一个顶点 v ∈ V v\in V vV 的**邻域 (Neighborhood)**是所有与之相邻的顶点所构成的集合,记作 N ( v ) N(v) N(v)

      一个点集 S S S 的邻域是所有与 S S S 中至少一个点相邻的点所构成的集合,记作 N ( S ) N(S) N(S) ,即 N ( S ) = ⋃ v ∈ S N ( v ) N(S)=\bigcup_{v\in S} N(v) N(S)=vSN(v)

    • 度 (Degree) :与一个顶点 v v v 关联的边的条数,记作 d ( v ) d(v) d(v)​ 。

      • 无向简单图,有 d ( v ) = ∣ N ( v ) ∣ d(v)=|N(v)| d(v)=N(v)

      • 握手定理(图论基本定理):对于任何无向图 G ( V , E ) G(V,E) G(V,E) ,有 ∑ v ∈ V d ( v ) = 2 ∣ E ∣ \sum_{v\in V}d(v)=2|E| vVd(v)=2E

        推论:在任意图中,度数为奇数的点必然有偶数个。

      • 孤立点 (Isolated vertex) d ( v ) = 0 d(v)=0 d(v)=0

        叶节点 (Leaf vertex)/悬挂点 (Pendant vertex) d ( v ) = 1 d(v)=1 d(v)=1

        偶点 (Even vertex) 2 ∣ d ( v ) 2\mid d(v) 2d(v)

        奇点 (Odd vertex) 2 ∤ d ( v ) 2\nmid d(v) 2d(v),其中一张图中奇点必有偶数个。

      • 对于一张图,所有节点的度数的最小值称为最小度 (Minimum degree),记作 δ ( G ) \delta(G) δ(G) ,最大值称为最大度 (Maximum degree),记作 Δ ( G ) \Delta(G) Δ(G)

      • 对于有向图,以一个顶点为起点的边的条数称为该顶点的出度 (Out-degree),记作 d + ( v ) d^+(v) d+(v) o u t ( v ) out(v) out(v) 。以一个顶点为终点的边的条数称为该节点的入度 (In-degree),记作 d − ( v ) d^-(v) d(v) i n ( v ) in(v) in(v) 。对于任何有向图 ,有: ∑ v ∈ V d + ( v ) = ∑ v ∈ V d − ( v ) = ∣ E ∣ \sum_{v \in V} d^+(v)=\sum_{v \in V} d^-(v)=|E| vVd+(v)=vVd(v)=E

      • 对于无向图 ,每个顶点的度数都是一个固定的常数的称为 k - 正则图 (-Regular Graph)

  • 路径:将若干个点连接起来的边的集合。边的数量被称作这条途径的长度,如果边是带权的,长度通常指路径上的边权之和。

    • 简单路径 (Simple path):路径连接的点两两不同。
    • 回路 (Circuit):路径头尾相接。
    • 简单回路/简单环 (Simple circuit):路径中仅头尾相接。
  • 子图:对于图 G G G ∃ H = ( V ′ , E ′ ) , V ′ ∈ V , E ′ ∈ E \exists H=(V',E'),V'\in V,E'\in E H=(V,E),VV,EE ,则称 H H H G G G子图 (Subgraph),记作 H ⊆ G H \subseteq G HG

  • 连通性:存在一条 u u u v v v 的路径则 u , v u,v u,v 连通 (Connected)。

    • 无向图

      • 图中任意两个顶点均连通的称连通图 (Connected graph)

      • H H H G G G 的一个连通子图,则 H H H G G G 的一个连通块/连通分量 (Connected component)

        若不存在 F F F 使 H ⊊ F ⊆ G H\subsetneq F\subseteq G HFG H H H G G G 的一个极大连通子图。

    • 有向图

      • 有向图的节点两两互相可达,则称这张图是强连通的 (Strongly connected)
      • 张有向图的边替换为无向边后可以得到一张连通图,则称原来这张有向图是弱连通的 (Weakly connected)
      • 同无向图,有弱连通分量 (Weakly connected component)、极大弱连通子图、强连通分量 (Strongly Connected component)、极大强连通子图。
    • 强连通图 G = ( V , E ) G=(V, E) G=(V,E), 若 V ′ ⊆ V V^{\prime} \subseteq V VV G [ V \ V ′ ] G\left[V \backslash V^{\prime}\right] G[V\V] 不是连通 图, 则 V ′ V^{\prime} V 是图 G G G 的一个点割集 (Vertex cut/Separating set)。大小为一的点割集又被称作割点 (Cut vertex)
    • 强连通图 G = ( V , E ) G=(V, E) G=(V,E) 和整数 k k k, 若 ∣ V ∣ ≥ k + 1 |V| \geq k+1 Vk+1 G G G 不存在大小为 k − 1 k-1 k1 的点割集, 则称 图 G G G 是** k k k-点连通的 ( k (k (k-vertex-connected)** ,而使得上式成立的最大的 k k k 被称作图 G G G点连通度 (Vertex connectivity),记作 κ ( G ) \kappa(G) κ(G) 。对于非完全图,点连通度即为最小点割集的大小, 而完 图 K n K_{n} Kn 的点连通度为 n − 1 n-1 n1
    • 对于图 G = ( V , E ) G=(V, E) G=(V,E) 以及 u , v ∈ V u, v \in V u,vV 满足 u ≠ v , u u \neq v, u u=v,u v v v 不相邻, u u u 可达 v v v, 若 V ′ ⊆ V ,  V^{\prime} \subseteq V_{\text {, }} VV u , v ∉ V ′ u, v \notin V^{\prime} u,v/V, 且在 G [ V \ V ′ ] G\left[V \backslash V^{\prime}\right] G[V\V] u u u v v v 不连通, 则 V ′ V^{\prime} V 被称作 u u u v v v 的点割集。 u u u v v v 的最小点割集的大小被称作 u u u v v v 的 局部点连通度 (Local connectivity), 记作 κ ( u , v ) \kappa(u, v) κ(u,v)
    • 对于连通图 G = ( V , E ) G=(V, E) G=(V,E), 若 E ′ ⊆ E E^{\prime} \subseteq E EE G ′ = ( V , E \ E ′ ) G^{\prime}=\left(V, E \backslash E^{\prime}\right) G=(V,E\E) (即从 G G G 中删去 E ′ E^{\prime} E 中的边) 不是连通图, 则 E ′ E^{\prime} E 是图 G G G 的一个边割集(Edge cut)。大小为一的边割集又被称作桥 (Bridge)
    • 对于连通图 G = ( V , E ) G=(V, E) G=(V,E) 和整数 k k k, 若 G G G 不存在大小为 k − 1 k-1 k1 的边割集, 则称图 G G G k k k - 边连 通的 ( k (k (k-edge-connected), 而使得上式成立的最大的 k k k 被称作图 G G G 的 边连通度 (Edge connectivity),记作 λ ( G ) \lambda(G) λ(G) 。 (对于任何图, 边连通度即为最小边割集的大小。)
    • 对于图 G = ( V , E ) G=(V, E) G=(V,E) 以及 u , v ∈ V u, v \in V u,vV 满足 u ≠ v , u u \neq v, u u=v,u 可达 v v v, 若 E ′ ⊆ E E^{\prime} \subseteq E EE, 且在 G ′ = ( V , E \ E ′ ) G^{\prime}=\left(V, E \backslash E^{\prime}\right) G=(V,E\E) u u u v v v 不连通, 则 E ′ E^{\prime} E 被称作 u u u v v v 的边割集。 u u u v v v 的最小边割集的大 小被称作 u u u v v v 的 局部边连通度 (Local edge-connectivity), 记作 λ ( u , v ) \lambda(u, v) λ(u,v)
    • 点双连通 (Biconnected):没有割点的强连通图是点双连通的。对于两个点,如果无论删去哪个点(只能删去一个,且不能删自己)都不能使它们不连通。
      • 点双连通没有传递性
    • 边双连通 (2-edge-connected) :没有桥的强连通图是边双连通的。对于两个点,无论删去哪条边(只能删去一条)都不能使它们不连通。
      • 边双连通有传递性
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值